1.Effectiveness of the integrated schistosomiasis control programme in Wuhan City from 2005 to 2023
Shuai WANG ; Huatang LUO ; Yang LI ; Hao WANG ; Cong LIU ; Yuelin XIONG ; Jiajing ZHANG ; Wen ZHU
Chinese Journal of Schistosomiasis Control 2025;37(2):176-183
Objective To evaluate the effectiveness of the integrated schistosomiasis control programme in Wuhan City from 2005 to 2023, so as to provide insights into precision control and elimination of schistosomiasis. Methods The integrated measures for schistosomiasis control implemented by health, agriculture, water resources, and forestry departments of Wuhan City, and the epidemiological data of schistosomiasis in Wuhan City were collected from 2005 to 2023, and the prevalence of human schistosomiasis, prevalence of Schistosoma japonicum infections in humans and bovines, areas of S. japonicum-infected snail habitats, areas of snail habitats in inner embankments, and actual areas of snail habitats were retrieved. In addition, the trends in prevalence of schistosomiasis in humans and livestock and snail status were evaluated in Wuhan City from 2005 to 2023 using Mann-Kendall test and a Joinpoint regression model. Results Mann-Kendall test revealed a tendency towards a decline in the prevalence of human schistosomiasis (Z = -4.41, P < 0.01), prevalence of S. japonicum infections in humans (Z = -4.89, P < 0.01) and bovines (Z = -4.50, P < 0.01), areas of S. japonicum-infected snail habitats (Z = -3.91, P < 0.01), areas of snail habitats in inner embankments (Z = -2.28, P = 0.02), and actual areas of snail habitats (Z = -5.95, P < 0.01) in Wuhan City from 2005 to 2023. Joinpoint regression analysis showed an average annual reduction of 8.58% in the prevalence of human schistosomiasis in Wuhan City from 2005 to 2023 [average annual percent change (AAPC) = -8.58%, 95% confidence interval (CI): (-10.02%, -6.65%), P < 0.01], with two joinpoints in 2013 and 2016, respectively, and the tendency towards a decline showed statistical significance during the period from 2013 through 2016 [annual percent change (APC) = -34.41%, 95% CI: (-40.36%, -20.01%), P < 0.01]. The prevalence of S. japonicum human infections appeared an average annual reduction of 51.91% in Wuhan City from 2005 to 2023 [AAPC = -51.91%, 95% CI: (-58.12%, -44.25%), P < 0.01], with two joinpoints in 2014 and 2017, respectively, and the tendency towards a decline showed statistical significance during the period from 2014 through 2017 [APC = -98.17%, 95% CI: (-99.17%, -90.87%), P < 0.01]. The prevalence of S. japonicum infections in bovines appeared an average annual reduction of 53.12% in Wuhan City from 2005 to 2023 [AAPC = -53.12%, 95% CI: (-59.65%, -42.44%), P < 0.01], with two joinpoints in 2011 and 2014, respectively, and the tendency towards a decline showed statistical significance during the period from 2014 through 2017 [APC = -98.63%, 95% CI: (-99.44%, -90.93%), P < 0.01]. The areas of S. japonicum-infected snail habitats appeared an average annual reduction of 47.09% in Wuhan City from 2005 to 2023 [AAPC = -47.09%, 95% CI: (-52.92%, -38.26%), P < 0.01], with two joinpoints in 2011 and 2014, respectively, and the tendency towards a decline showed statistical significance during the period from 2011 through 2014 [APC = -97.27%, 95% CI: (-98.65%, -88.06%), P < 0.01]. The areas of snail habitats in inner embankments appeared an average annual reduction of 4.45% in Wuhan City from 2005 to 2023 [AAPC = -4.45%, 95% CI: (-5.18%, -3.82%), P < 0.01], with three joinpoints in 2011, 2015 and 2018, respectively, and statistical significance was seen in the tendency towards a decline during the period from 2005 through 2011 [APC = -16.38%, 95% CI: (-20.15%, -14.25%), P < 0.01]. In addition, the actual areas of snail habitats appeared an average annual reduction of 2.65% in Wuhan City from 2005 to 2023 [AAPC = -2.65%, 95% CI: (-2.89%, -2.40%), P < 0.01], with a joinpoint in 2013, and the tendency towards a decline showed statistical significance during the period from 2013 through 2023 [APC = -4.06%, 95% CI: (-4.66%, -3.58%), P < 0.01]. Conclusions The integrated schistosomiasis control programme achieved significant effectiveness in Wuhan City from 2005 to 2023, with a tendency towards a decline in morbidity due to schistosomiasis in humans and livestock and snail status. The integrated schistosomiasis control strategy with emphasis on management of the source of S. japonicum infections should continue to be implemented to consolidate the schistosomiasis control achievements and achieve the goal of schistosomiasis elimination in the city.
2.Molecular mechanism of magnesium alloy promoting macrophage M2 polarization through modulation of PI3K/AKT signaling pathway for tendon-bone healing in rotator cuff injury repair.
Xianhao SHENG ; Wen ZHANG ; Shoulong SONG ; Fei ZHANG ; Baoxiang ZHANG ; Xiaoying TIAN ; Wentao XIONG ; Yingguang ZHU ; Yuxin XIE ; Zi'ang LI ; Lili TAN ; Qiang ZHANG ; Yan WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):174-186
OBJECTIVE:
To evaluate the effect of biodegradable magnesium alloy materials in promoting tendon-bone healing during rotator cuff tear repair and to investigate their potential underlying biological mechanisms.
METHODS:
Forty-eight 8-week-old Sprague Dawley rats were taken and randomly divided into groups A, B, and C. Rotator cuff tear models were created and repaired using magnesium alloy sutures in group A and Vicryl Plus 4-0 absorbable sutures in group B, while only subcutaneous incisions and sutures were performed in group C. Organ samples of groups A and B were taken for HE staining at 1 and 2 weeks after operation to evaluate the safety of magnesium alloy, and specimens from the supraspinatus tendon and proximal humerus were harvested at 2, 4, 8, and 12 weeks after operation. The specimens were observed macroscopically at 4 and 12 weeks after operation. Biomechanical tests were performed at 4, 8, and 12 weeks to test the ultimate load and stiffness of the healing sites in groups A and B. At 2, 4, and 12 weeks, the specimens were subjected to the following tests: Micro-CT to evaluate the formation of bone tunnels in groups A and B, HE staining and Masson staining to observe the regeneration of fibrocartilage at the tendon-bone interface after decalcification and sectioning, and Goldner trichrome staining to evaluate the calcification. Immunohistochemical staining was performed to detect the expressions of angiogenic factors, including vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2), as well as osteogenic factors at the tendon-bone interface. Additionally, immunofluorescence staining was used to examine the expressions of Arginase 1 and Integrin beta-2 to assess M1 and M2 macrophage polarization at the tendon-bone interface. The role of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in tendon-bone healing was further analyzed using real-time fluorescence quantitative PCR.
RESULTS:
Analysis of visceral sections revealed that magnesium ions released during the degradation of magnesium alloys did not cause significant toxic effects on organs such as the heart, liver, spleen, lungs, and kidneys, indicating good biosafety. Histological analysis further demonstrated that fibrocartilage regeneration at the tendon-bone interface in group A occurred earlier, and the amount of fibrocartilage was significantly greater compared to group B, suggesting a positive effect of magnesium alloy material on tendon-bone interface repair. Additionally, Micro-CT analysis results revealed that bone tunnel formation occurred more rapidly in group A compared to group B, further supporting the beneficial effect of magnesium alloy on bone healing. Biomechanical testing showed that the ultimate load in group A was consistently higher than in group B, and the stiffness of group A was also greater than that of group B at 4 weeks, indicating stronger tissue-carrying capacity following tendon-bone interface repair and highlighting the potential of magnesium alloy in enhancing tendon-bone healing. Immunohistochemical staining results indicated that the expressions of VEGF and BMP-2 were significantly upregulated during the early stages of healing, suggesting that magnesium alloy effectively promoted angiogenesis and bone formation, thereby accelerating the tendon-bone healing process. Immunofluorescence staining further revealed that magnesium ions exerted significant anti-inflammatory effects by regulating macrophage polarization, promoting their shift toward the M2 phenotype. Real-time fluorescence quantitative PCR results demonstrated that magnesium ions could facilitate tendon-bone healing by modulating the PI3K/AKT signaling pathway.
CONCLUSION
Biodegradable magnesium alloy material accelerated fibrocartilage regeneration and calcification at the tendon-bone interface in rat rotator cuff tear repair by regulating the PI3K/AKT signaling pathway, thereby significantly enhancing tendon-bone healing.
Animals
;
Rotator Cuff Injuries/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Wound Healing/drug effects*
;
Alloys/pharmacology*
;
Rats
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rotator Cuff/metabolism*
;
Macrophages/metabolism*
;
Magnesium/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Male
;
Biocompatible Materials
;
Bone Morphogenetic Protein 2/metabolism*
3.A preclinical and first-in-human study of superstable homogeneous radiolipiodol for revolutionizing interventional diagnosis and treatment of hepatocellular carcinoma.
Hu CHEN ; Yongfu XIONG ; Minglei TENG ; Yesen LI ; Deliang ZHANG ; Yongjun REN ; Zheng LI ; Hui LIU ; Xiaofei WEN ; Zhenjie LI ; Yang ZHANG ; Syed Faheem ASKARI RIZVI ; Rongqiang ZHUANG ; Jinxiong HUANG ; Suping LI ; Jingsong MAO ; Hongwei CHENG ; Gang LIU
Acta Pharmaceutica Sinica B 2025;15(10):5022-5035
Transarterial radioembolization (TARE) is a widely utilized therapeutic approach for hepatocellular carcinoma (HCC), however, the clinical implementation is constrained by the stringent preparation conditions of radioembolization agents. Herein, we incorporated the superstable homogeneous iodinated formulation technology (SHIFT), simultaneously utilizing an enhanced solvent form in a carbon dioxide supercritical fluid environment, to encapsulate radionuclides (such as 131I,177Lu, or 18F) with lipiodol for the preparation of radiolipiodol. The resulting radiolipiodol exhibited exceptional stability and ultra-high labeling efficiency (≥99%) and displayed notable intratumoral radionuclide retention and in vivo stability more than 2 weeks following locoregional injection in subcutaneous tumors in mice and orthotopic liver tumors in rats and rabbits. Given these encouraging findings, 18F was authorized as a radiotracer in radiolipiodol for clinical trials in HCC patients, and showed a favorable tumor accumulation, with a tumor-to-liver uptake ratio of ≥50 and minimal radionuclide leakage, confirming the feasibility of SHIFT for TARE applications. In the context of transforming from preclinical to clinical screening, the preparation of radiolipiodol by SHIFT represents an innovative physical strategy for radionuclide encapsulation. Hence, this work offers a reliable and efficient approach for TARE in HCC, showing considerable promise for clinical application (ChiCTR2400087731).
4.A Novel Mouse Model Unveils Protein Deficiency in Truncated CDKL5 Mutations.
Xue FENG ; Zi-Ai ZHU ; Hong-Tao WANG ; Hui-Wen ZHOU ; Ji-Wei LIU ; Ya SHEN ; Yu-Xian ZHANG ; Zhi-Qi XIONG
Neuroscience Bulletin 2025;41(5):805-820
Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) cause a severe neurodevelopmental disorder, yet the impact of truncating mutations remains unclear. Here, we introduce the Cdkl5492stop mouse model, mimicking C-terminal truncating mutations in patients. 492stop/Y mice exhibit altered dendritic spine morphology and spontaneous seizure-like behaviors, alongside other behavioral deficits. After creating cell lines with various Cdkl5 truncating mutations, we found that these mutations are regulated by the nonsense-mediated RNA decay pathway. Most truncating mutations result in CDKL5 protein loss, leading to multiple disease phenotypes, and offering new insights into the pathogenesis of CDKL5 disorder.
Animals
;
Disease Models, Animal
;
Mice
;
Protein Serine-Threonine Kinases/deficiency*
;
Mutation/genetics*
;
Epileptic Syndromes/genetics*
;
Humans
;
Dendritic Spines/pathology*
;
Spasms, Infantile/genetics*
;
Male
;
Seizures/genetics*
;
Mice, Inbred C57BL
5.Chromatin landscape alteration uncovers multiple transcriptional circuits during memory CD8+ T-cell differentiation.
Qiao LIU ; Wei DONG ; Rong LIU ; Luming XU ; Ling RAN ; Ziying XIE ; Shun LEI ; Xingxing SU ; Zhengliang YUE ; Dan XIONG ; Lisha WANG ; Shuqiong WEN ; Yan ZHANG ; Jianjun HU ; Chenxi QIN ; Yongchang CHEN ; Bo ZHU ; Xiangyu CHEN ; Xia WU ; Lifan XU ; Qizhao HUANG ; Yingjiao CAO ; Lilin YE ; Zhonghui TANG
Protein & Cell 2025;16(7):575-601
Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells. We reveal that under distinct epigenetic regulations, the early activated CD8+ T cells divergently originated for short-lived effector and memory precursor effector cells. We also uncover a defined epigenetic rewiring leading to the conversion from effector memory to central memory cells during memory formation. Additionally, we illustrate chromatin regulatory mechanisms underlying long-lasting versus transient transcription regulation during memory differentiation. Finally, we confirm the essential roles of Sox4 and Nrf2 in developing memory precursor effector and effector memory cells, respectively, and validate cell state-specific enhancers in regulating Il7r using CRISPR-Cas9. Our data pave the way for understanding the mechanism underlying epigenetic memory formation in CD8+ T-cell differentiation.
CD8-Positive T-Lymphocytes/metabolism*
;
Cell Differentiation
;
Chromatin/immunology*
;
Animals
;
Mice
;
Immunologic Memory
;
Epigenesis, Genetic
;
SOXC Transcription Factors/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Mice, Inbred C57BL
;
Gene Regulatory Networks
;
Enhancer Elements, Genetic
6.Disorder of phospholipid metabolism in the renal cortex and medulla contributes to acute tubular necrosis in mice after cantharidin exposure using integrative lipidomics and spatial metabolomics.
Tianmu HE ; Kexin LIN ; Lijuan XIONG ; Wen ZHANG ; Huan ZHANG ; Cancan DUAN ; Xiaofei LI ; Jianyong ZHANG
Journal of Pharmaceutical Analysis 2025;15(7):101210-101210
Cantharidin (CTD), a natural compound used to treat multiple tumors in the clinic setting, has been limited due to acute kidney injury (AKI). However, the major cause of AKI and its underlying mechanism remain to be elucidated. Serum creatinine (SCr) and blood urea nitrogen (BUN) were detected through pathological evaluation after CTD (1.5 mg/kg) oral gavage in mice in 3 days. Kidney lipidomics based on ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to investigate lipids disorder after CTD exposure in mice. Then, spatial metabolomics based on matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was used to detect the kidney spatial distribution of lipids. Integrative analysis was performed to reveal the spatial lipid disorder mechanism and verify key lipids in vitro. The results showed that the levels of SCr and BUN were increased, and tubular necrosis was observed in mouse kidneys, resulting in acute tubular necrosis (ATN) in CTD-induced AKI. Then, lipidomics results revealed that after CTD exposure, 232 differential lipid metabolites and 11 pathways including glycerophospholipid (GP) and sphingolipid (SL) metabolism were disrupted. Spatial metabolomics revealed that 55 spatial differential lipid metabolites and nine metabolic pathways were disturbed. Subsequently, integrative analysis found that GP metabolism was stimulated in the renal cortex and medulla, whereas SL metabolism was inhibited in the renal cortex. Up-regulated lysophosphatidylcholine (LysoPC) (18:2(9Z,12Z)), LysoPC (16:0/0:0), glycerophosphocholine, and down-regulated sphingomyelin (SM) (d18:0/16:0), SM (d18:1/24:0), and SM (d42:1) were key differential lipids. Among them, LysoPC (16:0/0:0) was increased in the CTD group at 1.1196 μg/mL, which aggravated CTD-induced ATN in human kidney-2 (HK-2) cells. LysoPC acyltransferase was inhibited and choline phosphotransferase 1 (CEPT1) was activated after CTD intervention in mice and in HK-2 cells. CTD induces ATN, resulting in AKI, by activating GP metabolism and inhibiting SL metabolism in the renal cortex and medulla, LysoPC (16:0/0:0), LysoPC acyltransferase, and CEPT1 may be the therapeutic targets.
7.Effect of YTH Domain Family Protein 2 on the Sodium Arsenite-Induced Malignant Transformation of Skin Cells.
Wen-Xiao XIONG ; Tian-He ZHAO ; Ke-Yan LONG ; Zun-Zhen ZHANG
Acta Academiae Medicinae Sinicae 2025;47(3):333-342
Objective To investigate the effect of liquid-liquid phase separation(LLPS)of YTH domain family protein 2(YTHDF2)on the sodium arsenite-induced malignant transformation of skin cells,providing a new intervention target for the prevention and control of sodium arsenite-induced carcinogenesis.Methods The HaCaT cell model of malignant transformation was constructed by continuous treatment with 1 μmol/L sodium arsenite for 22 weeks,including cells with normal YTHDF2 LLPS(YTHDF2-wt)and cells with inhibited YTHDF2 LLPS(YTHDF2-mut).Confocal microscopy was employed to observe and characterize the LLPS droplets formed by YTHDF2 during sodium arsenite-induced malignant transformation of skin cells.Cell proliferation,scratch healing,and colony formation assays were performed to detect malignant phenotypes.Western blotting,quantitative reverse transcription PCR,and immunofluorescence experiments were conducted to examine the effects of YTHDF2 LLPS on the mRNA and protein levels of phosphatase and tensin homolog deleted on chromosome ten(PTEN)during sodium arsenite-induced malignant transformation of skin cells.Results After 4 weeks of sodium arsenite treatment,LLPS droplets of YTHDF2 appeared in YTHDF2-wt cells,and the number of droplets gradually increased as the treatment time was prolonged(F=35.252,P<0.001),while no phase-separated droplets were observed in YTHDF2-mut cells.Compared with YTHDF2-mut cells,YTHDF2-wt cells showed enhanced proliferation at the time points of 48 h(t=3.654,P=0.006)and 72 h(t=5.458,P<0.001)after 22 weeks of sodium arsenite treatment.The scratch healing rate of YTHDF2-wt cells was increased at the 8th(t=12.137,P<0.001)and 22th(t=4.484,P=0.011)weeks of sodium arsenite treatment.The number of colonies formed by YTHDF2-wt cells was higher at the 4th(t=3.365,P=0.027),8th(t=5.580,P=0.005),and 22th(t=3.328,P=0.029)weeks of sodium arsenite treatment.Compared with YTHDF2-mut cells,YTHDF2-wt cells showed down-regulated protein(t=-3.119,P=0.036)and mRNA(t=4.051,P=0.015) levels of PTEN after 22 weeks of sodium arsenite treatment.Immunofluorescence results showed that after 4 weeks of sodium arsenite treatment,YTHDF2 LLPS droplets in YTHDF2-wt cells were localized to stress granules,translation-related membrane-less organelles.Conclusions During sodium arsenite-induced malignant transformation of skin cells,YTHDF2 undergoes LLPS and localizes to stress granules,translation-related membrane-less organelles.YTHDF2 LLPS participates in sodium arsenite-induced malignant transformation of skin cells by down-regulating the mRNA level of the key tumor suppressor PTEN.
Arsenites/toxicity*
;
Sodium Compounds/toxicity*
;
Humans
;
Cell Transformation, Neoplastic/drug effects*
;
PTEN Phosphohydrolase/metabolism*
;
Cell Proliferation
;
Skin/cytology*
;
RNA-Binding Proteins
;
Skin Neoplasms/chemically induced*
;
Cell Line
8.Expression and prognostic significance of KAP1 gene in malignant pleural mesothelioma
Wen MEI ; Xinmeng WANG ; Ruai LIU ; Wei XIONG ; Yepin ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2024;42(4):258-267
Objective:To explore the expression of KAP1 (KRAB-associated protein 1, KAP1) in Malignant pleural mesothelioma (MPM) based on the cancer genome atlas (TCGA) and clinical trials. And elucidate the correlation between the expression of KAP1 and the clinical pathological parameters of patients with MPM and its prognosis.Methods:In April 2022, Based on the second generation KAP1mRNA sequencing data and clinicopathological data of MPM patients downloaded from TCGA database, the correlation between KAP1mRNA expression and clinical parameters was analyzed, and the correlation between KAP1 protein expression and clinicopathological parameters and its prognostic value were analyzed based on Chuxiong data set cohort clinical samples. The expression of KAP1 mRNA in MPM samples and matched normal tumor adjacent tissues was detected by qRT-PCR, and the expression of KAP1 protein in MPM and normal pleural tissues was detected by immunohistochemistry and Westernblotting. To construct a Kaplan-Meier model to explore the effect of KAP1 expression on the prognosis of MPM patients, and to analyze the prognostic factors of MPM patients by Cox regression.Results:qRT-PCR and Western blotting detection showed that the expression levels of KAP1 gene in four different MPM cells (NCI-H28, NCI-H2052, NCI-H2452, and MTSO-211H) were significantly higher than those in normal pleural mesothelial cells Met-5A. qRT-PCR, Western blotting and IHC results demonstrated that the mRNA and protein expression levels of KAP1 in MPM tissues was significantly higher than that in matching normal mesothelial tissues, and the expression level of KAP1 protein was correlated with TP 53 protein expression levels and serum CEA levels ( P<0.05) . The mRNA expression level was significantly correlated with the prognosis, The overall survival time of mesothelioma patients with high KAP1mRNA expression was significantly shorter (HR=3.7, Logrank P<0.001) . Tumor type, age and the mRNA expression were related to the prognosis of MPM patients ( P<0.05) . Multivariate analysis showed that tumor type and KAP1 mRNA expression level were independent prognostic factors of MPM patients ( P<0.05) . Conclusion:In this study, TCGA database and Chuxiong cohort experiment samples were used to collect the relevant information of KAP1 expression in malignant melanoma tissues. It was confirmed that KAP1 is highly expressed in MPM tissues. The mRNA expression level and pathological type are correlated with the prognosis of patients.
9.Establishing equivalent model to verify the precision of personalized bone model rapidly
Aili ZHANG ; Jiazheng HUANG ; Wen FAN ; Yihuan LI ; Shuang LI ; Xuewen GAN ; Ying XIONG
Chinese Journal of Tissue Engineering Research 2024;28(30):4795-4799
BACKGROUND:Currently,the verification of the precision of personalized bone models is usually performed by methods such as paired t-tests or intraclass correlation coefficient,but such methods often require the production of large batches of models,which do not satisfy the need for immediate use of personalized models. OBJECTIVE:To study the feasibility of establishing the equivalent model to verify the precision of the personalized bone model rapidly. METHODS:Bone CT images of three adults were randomly obtained for reconstruction.3D printing was used to create personalized bone models,and then the personalized bone models were scanned using CT and reconstructed.Mimics was used to compare the reconstructed models of bone CT images with the bone CT images.Geomagic Studio was used to analyze the fitting deviation between the reconstruction model of personalized bone model CT image and the reconstruction model of skeletal CT image.The 3D-printed personalized bone model was measured against the measurement positions and dimensions marked on the reconstruction model of skeletal CT image,and the error was calculated. RESULTS AND CONCLUSION:(1)By comparing the reconstructed bone CT image model with the bone CT scan image,the two were compatible in terms of anatomical structure and morphology,and the contours almost overlapped.(2)By fitting bias analysis,the standard bias was 0.176,0.226,and 0.143 mm in order,and all the results were<0.25 mm.(3)By measuring and calculating the model,the mean relative errors were 0.44%,0.21%,and 0.13%,and all the results were within 5%error.(4)The constructed equivalent model was in line with the basic conditions for making personalized bone models.The established equivalent model met the clinical needs and design requirements,and it was feasible to use the method of the equivalent model to verify the precision of the personalized bone model quickly.(5)This method could provide a targeted and rapid way to verify the precision of personalized bone models.It could achieve the goal of providing immediate clinical use without the need to produce large batches of models compared to conventional methods such as paired t-tests or intraclass correlation coefficient.
10.Evaluation of the predictive value of EuroSCORE Ⅱ and SYNTAX Ⅱ scores for clinical outcomes in patients undergoing CABG
Xin XIONG ; Nan LI ; Yijun XU ; Zhiqiang CHEN ; Peng LIU ; Wen WEN ; Xiaowei LI ; Xiaolong ZHANG ; Durong CHEN ; Yongzhi DENG
Chinese Journal of Thoracic and Cardiovascular Surgery 2024;40(8):464-468
Objective:To explore and analyze the predictive value of EuroSCORE Ⅱ and SYNTAX Ⅱ scores for clinical outcomes in patients undergoing coronary artery bypass grafting (CABG) surgery.Methods:A total of 500 coronary artery disease (CAD) patients who underwent CABG in Shanxi Cardiovascular Hospital from April 2014 to July 2023 were selected as the study subjects, all patients were given EuroSCORE Ⅱand SYNTAX Ⅱ scores to evaluate the predictive value of EuroSCOREⅡfor perioperative mortality and SYNTAX Ⅱ for 4-year mortality. Univariate and multivariate Logistic analysis were employed to analyze the independent risk factors for perioperative and 4-year mortality.Results:There were 3 deaths during the perioperative period, with a mortality rate of 0.60%, the predicted mortality rate of EuroSCOREⅡwas 1.71%; there were 21 deaths at 4 years after surgery, with a mortality rate of 4.23% and the predicted mortality rate of SYNTAX Ⅱwas 9.02%. Logistic regression analysis showed that left ventricular ejection fraction (LVEF) was the only independent protective factor for perioperative mortality, and advanced age was the only independent risk factor for 4-year postoperative mortality in patients ( P<0.05). The analysis of the working characteristic curve of the subjects found that the area under the receiver operating characteristic curve ( ROC) of EuroSCORE Ⅱ for perioperative mortality was 0.782, and the area under ROC curve of SYNTAX Ⅱfor postoperative 4-year mortality was 0.743. Conclusion:Both EuroSCORE Ⅱand SYNTAX Ⅱhave certain predictive value for perioperative mortality and postoperative 4-year mortality in patients undergoing CABG, respectively, but the predicted mortality rate is relatively higher.

Result Analysis
Print
Save
E-mail