1.Comparative Genomics Reveals Evolutionary Drivers of Sessile Life and Left-right Shell Asymmetry in Bivalves
Zhang YANG ; Mao FAN ; Xiao SHU ; Yu HAIYAN ; Xiang ZHIMING ; Xu FEI ; Li JUN ; Wang LILI ; Xiong YUANYAN ; Chen MENGQIU ; Bao YONGBO ; Deng YUEWEN ; Huo QUAN ; Zhang LVPING ; Liu WENGUANG ; Li XUMING ; Ma HAITAO ; Zhang YUEHUAN ; Mu XIYU ; Liu MIN ; Zheng HONGKUN ; Wong NAI-KEI ; Yu ZINIU
Genomics, Proteomics & Bioinformatics 2022;(6):1078-1091
Bivalves are species-rich mollusks with prominent protective roles in coastal ecosystems.Across these ancient lineages,colony-founding larvae anchor themselves either by byssus produc-tion or by cemented attachment.The latter mode of sessile life is strongly molded by left-right shell asymmetry during larval development of Ostreoida oysters such as Crassostrea hongkongensis.Here,we sequenced the genome of C.hongkongensis in high resolution and compared it to reference bivalve genomes to unveil genomic determinants driving cemented attachment and shell asymmetry.Importantly,loss of the homeobox gene Antennapedia(Antp)and broad expansion of lineage-specific extracellular gene families are implicated in a shift from byssal to cemented attachment in bivalves.Comparative transcriptomic analysis shows a conspicuous divergence between left-right asymmetrical C.hongkongensis and symmetrical Pinctada fucata in their expression profiles.Especially,a couple of orthologous transcription factor genes and lineage-specific shell-related gene families including that encoding tyrosinases are elevated,and may cooperatively govern asymmet-rical shell formation in Ostreoida oysters.
2.Correction of β-thalassemia mutant by base editor in human embryos.
Puping LIANG ; Chenhui DING ; Hongwei SUN ; Xiaowei XIE ; Yanwen XU ; Xiya ZHANG ; Ying SUN ; Yuanyan XIONG ; Wenbin MA ; Yongxiang LIU ; Yali WANG ; Jianpei FANG ; Dan LIU ; Zhou SONGYANG ; Canquan ZHOU ; Junjiu HUANG
Protein & Cell 2017;8(11):811-822
β-Thalassemia is a global health issue, caused by mutations in the HBB gene. Among these mutations, HBB -28 (A>G) mutations is one of the three most common mutations in China and Southeast Asia patients with β-thalassemia. Correcting this mutation in human embryos may prevent the disease being passed onto future generations and cure anemia. Here we report the first study using base editor (BE) system to correct disease mutant in human embryos. Firstly, we produced a 293T cell line with an exogenous HBB -28 (A>G) mutant fragment for gRNAs and targeting efficiency evaluation. Then we collected primary skin fibroblast cells from a β-thalassemia patient with HBB -28 (A>G) homozygous mutation. Data showed that base editor could precisely correct HBB -28 (A>G) mutation in the patient's primary cells. To model homozygous mutation disease embryos, we constructed nuclear transfer embryos by fusing the lymphocyte or skin fibroblast cells with enucleated in vitro matured (IVM) oocytes. Notably, the gene correction efficiency was over 23.0% in these embryos by base editor. Although these embryos were still mosaic, the percentage of repaired blastomeres was over 20.0%. In addition, we found that base editor variants, with narrowed deamination window, could promote G-to-A conversion at HBB -28 site precisely in human embryos. Collectively, this study demonstrated the feasibility of curing genetic disease in human somatic cells and embryos by base editor system.
APOBEC-1 Deaminase
;
genetics
;
metabolism
;
Base Sequence
;
Blastomeres
;
cytology
;
metabolism
;
CRISPR-Cas Systems
;
Embryo, Mammalian
;
metabolism
;
pathology
;
Female
;
Fibroblasts
;
metabolism
;
pathology
;
Gene Editing
;
methods
;
Gene Expression
;
HEK293 Cells
;
Heterozygote
;
Homozygote
;
Humans
;
Point Mutation
;
Primary Cell Culture
;
Promoter Regions, Genetic
;
Sequence Analysis, DNA
;
beta-Globins
;
genetics
;
metabolism
;
beta-Thalassemia
;
genetics
;
metabolism
;
pathology
;
therapy
3.Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
Puping LIANG ; Hongwei SUN ; Ying SUN ; Xiya ZHANG ; Xiaowei XIE ; Jinran ZHANG ; Zhen ZHANG ; Yuxi CHEN ; Chenhui DING ; Yuanyan XIONG ; Wenbin MA ; Dan LIU ; Junjiu HUANG ; Zhou SONGYANG
Protein & Cell 2017;8(8):601-611
Targeted point mutagenesis through homologous recombination has been widely used in genetic studies and holds considerable promise for repairing disease-causing mutations in patients. However, problems such as mosaicism and low mutagenesis efficiency continue to pose challenges to clinical application of such approaches. Recently, a base editor (BE) system built on cytidine (C) deaminase and CRISPR/Cas9 technology was developed as an alternative method for targeted point mutagenesis in plant, yeast, and human cells. Base editors convert C in the deamination window to thymidine (T) efficiently, however, it remains unclear whether targeted base editing in mouse embryos is feasible. In this report, we generated a modified high-fidelity version of base editor 2 (HF2-BE2), and investigated its base editing efficacy in mouse embryos. We found that HF2-BE2 could convert C to T efficiently, with up to 100% biallelic mutation efficiency in mouse embryos. Unlike BE3, HF2-BE2 could convert C to T on both the target and non-target strand, expanding the editing scope of base editors. Surprisingly, we found HF2-BE2 could also deaminate C that was proximal to the gRNA-binding region. Taken together, our work demonstrates the feasibility of generating point mutations in mouse by base editing, and underscores the need to carefully optimize base editing systems in order to eliminate proximal-site deamination.
APOBEC-1 Deaminase
;
genetics
;
metabolism
;
Animals
;
Bacterial Proteins
;
genetics
;
metabolism
;
Base Sequence
;
CRISPR-Associated Protein 9
;
CRISPR-Cas Systems
;
Cytidine
;
genetics
;
metabolism
;
Embryo Transfer
;
Embryo, Mammalian
;
Endonucleases
;
genetics
;
metabolism
;
Gene Editing
;
methods
;
HEK293 Cells
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Microinjections
;
Plasmids
;
chemistry
;
metabolism
;
Point Mutation
;
RNA, Guide
;
genetics
;
metabolism
;
Thymidine
;
genetics
;
metabolism
;
Zygote
;
growth & development
;
metabolism
;
transplantation
4.Effective and precise adenine base editing in mouse zygotes.
Puping LIANG ; Hongwei SUN ; Xiya ZHANG ; Xiaowei XIE ; Jinran ZHANG ; Yaofu BAI ; Xueling OUYANG ; Shengyao ZHI ; Yuanyan XIONG ; Wenbin MA ; Dan LIU ; Junjiu HUANG ; Zhou SONGYANG
Protein & Cell 2018;9(9):808-813
Adenine
;
Animals
;
Gene Editing
;
Mice
;
Zygote
;
metabolism
5.Bend family proteins mark chromatin boundaries and synergistically promote early germ cell differentiation.
Guang SHI ; Yaofu BAI ; Xiya ZHANG ; Junfeng SU ; Junjie PANG ; Quanyuan HE ; Pengguihang ZENG ; Junjun DING ; Yuanyan XIONG ; Jingran ZHANG ; Jingwen WANG ; Dan LIU ; Wenbin MA ; Junjiu HUANG ; Zhou SONGYANG
Protein & Cell 2022;13(10):721-741
Understanding the regulatory networks for germ cell fate specification is necessary to developing strategies for improving the efficiency of germ cell production in vitro. In this study, we developed a coupled screening strategy that took advantage of an arrayed bi-molecular fluorescence complementation (BiFC) platform for protein-protein interaction screens and epiblast-like cell (EpiLC)-induction assays using reporter mouse embryonic stem cells (mESCs). Investigation of candidate interaction partners of core human pluripotent factors OCT4, NANOG, KLF4 and SOX2 in EpiLC differentiation assays identified novel primordial germ cell (PGC)-inducing factors including BEN-domain (BEND/Bend) family members. Through RNA-seq, ChIP-seq, and ATAC-seq analyses, we showed that Bend5 worked together with Bend4 and helped mark chromatin boundaries to promote EpiLC induction in vitro. Our findings suggest that BEND/Bend proteins represent a new family of transcriptional modulators and chromatin boundary factors that participate in gene expression regulation during early germline development.
Animals
;
Cell Differentiation/genetics*
;
Chromatin/metabolism*
;
Embryonic Stem Cells
;
Germ Cells/metabolism*
;
Germ Layers/metabolism*
;
Mice