1.Real time ex vivo detection and dynamic monitoring of in vivo expression of secreted luciferase gene injected by hydrodynamic method.
Wenhong TIAN ; Gang WANG ; Shuntao LUO ; Xiaoyan DONG ; Xinyang FU ; Wenjie TAN ; Xiaobing WU
Chinese Journal of Biotechnology 2009;25(10):1552-1557
We chose Gaussia luciferase (Gluc), a secreted luciferase gene as reporter to real-time detect and dynamically monitor hydrodynamic injection gene expression. First, we constructed an expression vector pAAV2neo-Gluc. Then Huh7 and HepG2 cells were transfected with pAAV2neo-Gluc and the activity of Gluc in the supernatant and cell lysates were assayed. Results showed that the Gluc activity in the supernatant was about 100 higher than that in cell lysates, indicating the expressed Gluc existing mainly as a secreted form as reported. Live bioluminescence imaging of mice hydrodynamic injected pAAV2neo-Gluc showed whole body distribution, while the pAAV2neo-Fluc primarily located in the liver. Then we injected different doses of pAAV2neo-Gluc into mice by tail-vein hydrodynamic injection, took minor amount of blood from mice tails at different time points and measured the luciferase activity to investigate dynamic changes of Gluc expression and secretion in vivo. The results suggested that the time courses of Gluc expression were highly consistent among each dose groups. The luciferase activity in blood could be detected as early as 2 h after injection, reached the peak at about 10 h and gradually decreased from then on. The expression level of Glue was positively correlated with the dose of injected plasmid DNA. To further detect the assay sensitivity of the ex vivo Gluc measurement method, we investigated three additional groups of mice injected with lower doses of 0.001 microg, 0.01 microg and 0.1 microg pAAV2neo-Gluc respectively. Results revealed that activity of Gluc in blood could be detected even at dose as low as 0.001 microg DNA, suggesting the assay sensitivity was extremely high. In conclusion, a real-time ex vivo detection method of dynamically monitoring of gene expression in vivo by hydrodynamic injection can be a valuable means for the study of gene expression regulation in vivo.
Animals
;
Gene Expression Regulation
;
Genes, Reporter
;
genetics
;
Genetic Therapy
;
Hep G2 Cells
;
Humans
;
Hydrodynamics
;
Injections, Intravenous
;
Liver
;
metabolism
;
Luciferases
;
administration & dosage
;
biosynthesis
;
genetics
;
pharmacokinetics
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Transfection
2.Numerical simulation of the effect of virtual stent release pose on the expansion results.
Jing LI ; Kun PENG ; Xinyang CUI ; Wenyu FU ; Aike QIAO
Journal of Biomedical Engineering 2018;35(2):214-218
The current finite element analysis of vascular stent expansion does not take into account the effect of the stent release pose on the expansion results. In this study, stent and vessel model were established by Pro/E. Five kinds of finite element assembly models were constructed by ABAQUS, including 0 degree without eccentricity model, 3 degree without eccentricity model, 5 degree without eccentricity model, 0 degree axial eccentricity model and 0 degree radial eccentricity model. These models were divided into two groups of experiments for numerical simulation with respect to angle and eccentricity. The mechanical parameters such as foreshortening rate, radial recoil rate and dog boning rate were calculated. The influence of angle and eccentricity on the numerical simulation was obtained by comparative analysis. Calculation results showed that the residual stenosis rates were 38.3%, 38.4%, 38.4%, 35.7% and 38.2% respectively for the 5 models. The results indicate that the pose has less effect on the numerical simulation results so that it can be neglected when the accuracy of the result is not highly required, and the basic model as 0 degree without eccentricity model is feasible for numerical simulation.