1.Establishing cases library of renal diseases and the feedback after the application of the cases library
Lian HE ; Xinkui TIAN ; Wen TANG ; Song WANG ; Junbao SHI ; Zhen ZHUANG ; Aihua ZHANG
Chinese Journal of Medical Education Research 2018;17(2):210-213
Clinical teaching is the critical stage for medical students turning to qualified doctor.In order to overcome the objective problems of insufficient clinical case resources,using the electronic medical record system to collect cases,the real case library of kidney disease was initially constructed,which was presented in the form of network resources.This case database was applied to assist teaching in the probation of eight year medical students at the undergraduate stage,and the application of the case database was evaluated in the form of questionnaire.It is found that case database is helpful to students' clinical learning,and has the necessity of further improvement and good prospects for popularization.It provides a new idea for clinical teaching.
2.Polycyclic aromatic hydrocarbons monohydroxy metabolites level in urine of general population in eight provinces of China.
Chuanfeng HUANG ; Jing ZHANG ; Chunguang DING ; Cuilan LIU ; Gang WANG ; Xinkui SONG ; Hanlin HUANG ; Baoli ZHU ; Hua SHAO ; Chunxiang ZHAO ; Changcheng HAN ; Shanzhuo PENG ; Xianlong JIANG ; Shanfa YU ; Hongrong JI ; Xiaoxi ZHANG ; Ran SUN ; Yuxin ZHENG ; Huifang YAN
Chinese Journal of Preventive Medicine 2014;48(2):102-108
OBJECTIVETo assess the levels of polycyclic aromatic hydrocarbons monohydroxy metabolites in urine of general population in China among 8 provinces, provide the baseline of the metabolites in the general population.
METHODSFrom 2009 to 2010, 18 120 subjects of general population aged 6-60 years old were recruited from 24 areas among 8 provinces in east, west and central areas of China mainland by cluster random sampling. The information of the living environment and health condition were collected by questionnaire and spot urine samples were collected, 4 680 urine samples were analysed by high performance liquid chromatography with tandem mass spectrometry, and monohydroxy metabolites distribution in urine among groups of gender and ages were analysed.
RESULTSGeometric means (GM) of 2-naphthol, 1-naphthol, 3-phenanthrol and 1-hydroxypyrene concentration in urine (95%CI) were 1.85 (1.75-1.95), 1.55 (1.50-1.61), 0.57 (0.54-0.59) and 0.82 (0.78-0.85) µg/L, respectively;and median are 2.44, <0.50, 0.72 and 0.90 µg/L, respectively. The concentration between male and female were significantly different (P < 0.01), and the concentration among the groups of population were significantly different (P < 0.01), the GM of 2-naphthol among the groups of population aged 6-12, 13-16, 17-20, 21-30, 31-45 and 46-60 years old were 1.60, 1.56, 1.69, 2.23, 1.91 and 1.86 µg/L (χ(2) = 17.90, P < 0.01), the GM of 1-naphthol in the groups were 1.30, 1.16, 1.53, 1.68, 1.80 and 1.52 µg/L (χ(2) = 76.22, P < 0.01), the GM of 3-phenanthrol in the groups were 0.78, 0.76, 0.55, 0.42, 0.50 and 0.99 µg/L (χ(2) = 66.48, P < 0.01), the GM of 1-hydroxypyrene in the groups were 0.77,0.64, 1.00, 0.84, 0.84 and 0.57 µg/L (χ(2) = 51.48, P < 0.01), respectively.
CONCLUSIONThe distribution of monohydroxy metabolites levels in urine of general population were different, it provided a basic data for the further study of polycyclic aromatic hydrocarbons biomonitoring in the population.
Adolescent ; Adult ; Child ; China ; epidemiology ; Cross-Sectional Studies ; Environmental Exposure ; Female ; Humans ; Male ; Middle Aged ; Naphthols ; urine ; Polycyclic Aromatic Hydrocarbons ; urine ; Pyrenes ; urine ; Sentinel Surveillance ; Young Adult