1.Research progress of anti-sepsis treatment using traditional Chinese medicine
Zhongyi LING ; Linlin CHEN ; Xinhao XING ; Yan WANG
Journal of Pharmaceutical Practice 2023;41(2):70-73
Sepsis is life-threatening with complex pathogenesis. It is a big problem in the medical field. Clinically, antibiotics, hormones and mechanical ventilation are the main treatments. There is a lack of specific therapeutic drugs. The treatment effect is not good. In recent years, more and more progress has been made in the treatment of sepsis with traditional Chinese medicine. This article reviews the etiology, pathogenesis and treatment strategies of sepsis. It focuses on four therapies, including clearing away heat and detoxification, clearing the interior, activating blood circulation and removing blood stasis, and strengthening the foundation. We further discuss the advantages and disadvantages of traditional Chinese medicine in the treatment of sepsis, in order to provide reference for the clinical treatment of sepsis.
2.Research progress of immunotherapies on correction of immunoparalysis in sepsis
Xinhao XING ; Linlin CHEN ; Zhongyi LING ; Yan WANG
Journal of Pharmaceutical Practice 2023;41(1):1-7
Immunoparalysis is the main cause of death in patients with intermediate and terminal sepsis. The correction of immunoparalysis is an important direction of sepsis treatment. In the pathological process of sepsis, a variety of factors contribute to the imbalanced secretion of cytokines, weakened function of antigen-presenting cells, apoptosis and depletion of lymphocytes, and ultimately lead to immunoparalysis, secondary infection, and even patient deaths. Cytokines such as GM-CSF, IFN-γ, IL-7, and IL-15, immune checkpoint-related therapies such as PD-1/PD-L1 antibodies, CTLA-4 antibodies, TIM-3 antibodies, and LAG-3 antibodies, and immunoreactive substances such as thymosin α1 and immunoglobulin might be beneficial to correct the immune paralysis of patients. the progress of immunotherapy to correct immune paralysis in sepsis were reviewed in this article.
3.Advances in prevention and treatment for motion sickness
Jingxiang ZHANG ; Lin ZHU ; Xinhao XING ; Xinrong WANG ; Yan WANG
Journal of Pharmaceutical Practice 2022;40(3):199-201
Motion sickness is a series of physiological responses in human being caused by abnormal movement stimulation. With the development of science and technology, a growing number of people choose to travel by high speed vehicles. Motion sickness happens more frequently. A large number of non-drug and drug intervention methods have been reported in the treatment of motion sickness. This article provides an overview on the research developments in the prevention and treatment of motion sickness in order to provide new ideas for drug research.
4.The pharmacokinetic study on compound diphenhydramine hydrochloride and caffeine in rats
Yu GAO ; Lin LING ; Xinhao XING ; Liang ZHAO ; Xinrong WANG ; Yan WANG
Journal of Pharmaceutical Practice 2021;39(5):415-421
Objective To establish an assay method for diphenhydramine hydrochloride and caffeine in rat plasma by UPLC-MS/MS for pharmacokinetic study. Methods The chromatographic separation was performed on an ACE 3 C18-PFP (3.0 mm×150 mm, 3 μm) by isocratic elution with the mobile phase of water containing 0.1% formic acid and acetonitrile (62:38, V/V). MS condition was optimized in the positive ion detection mode by multiple reaction monitoring (MRM), along with the Agilent JetStream electrospray source interface (AJS-ESI). The precursors to the product ion transitions were 256.2→167.0 (m/z) for diphenhydramine hydrochloride, 262.0→167.0 (m/z) for the internal standard (IS) diphenhydramine-D6, 195.0→138.0 (m/z) for caffeine and 204.0→116.2 (m/z) for the IS caffeine-D9. Results The calibration curve was linear in the range of 1-1×103 ng/ml for diphenhydramine hydrochloride in rat plasma (r=0.999 6), and in the range of 15-1.5×105 ng/ml for caffeine in rat plasma, (r=0.999 9). The intra-day and inter-day precision and accuracy were good (RSD<10%, RE<±10%). Pharmacokinetic studies showed that metabolic characteristics of diphenhydramine hydrochloride 10-30 mg/kg and caffeine 24-72 mg/kg were linear after intragastric administration. The two components were metabolized in rats with gender difference, the cmax and the AUC of diphenhydramine hydrochloride and caffeine were greater in female than those in males. Conclusion This method is accurate, rapid and sensitive. It can be used for the determination of diphenhydramine hydrochloride and caffeine in rat plasma collected for pharmacokinetic study. The results of pharmacokinetic studies in rats provide reliable data support for the clinical application of the compound preparation.