1.Mechanism of Tumor T Cell Exhaustion from Perspective of ''Sanjiao-Yingwei'' Qi Transformation Malfunction
Xinhao TANG ; Bowen CHU ; Yuanyuan QIN ; Yeling LIU ; Xinyan SHU ; Mianhua WU ; Gang YIN ; Jianguo DAI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):176-185
In order to promote the innovative application of Sanjiao theory and Yingwei theory, this paper tries to apply the ''Sanjiao-Yingwei'' Qi transformation theory to the treatment of tumor diseases, integrating it with T cell exhaustion mechanism to elaborate on its scientific connotation and using network pharmacology and bioinformatics to elucidate the correlation between the anti-tumor mechanism of ''Sanjiao-Yingwei'' Qi transformation and T cell exhaustion. The ''Sanjiao-Yingwei'' Qi transformation function is closely related to the immunometabolic ability of the human body, and the ''Sanjiao-Yingwei'' Qi transformation system constitutes the immunometabolic exchange system within and outside the cellular environment. Cancer toxicity is generated by the fuzzy Sanjiao Qi, and the long-term fuzzy Sanjiao Qi is the primary factor leading to T cell exhaustion, which is related to the long-term activation of T cell receptors by the high tumor antigen load in the tumor microenvironment. Qi transformation malfunction of the Sanjiao produces phlegm and collects stasis, which contributes to T cell exhaustion and is correlated with nutrient deprivation, lipid accumulation, and high lactate levels in the immunosuppressed tumor microenvironment, as well as with the release of transforming growth factor-β and upregulated expression of programmed death receptor-1 by tumor-associated fibroblasts and platelets in the tumor microenvironment. Ying and Wei damage due to Sanjiao Qi transformation malfunction is similar to the abnormal manifestations such as progressive loss of exhausted T cell effector function and disturbance of cellular energy metabolism. Guizhi decoction, Shengming decoction, and Wendan decoction can correct T cell exhaustion and exert anti-tumor effects through multi-target and multi-pathways by regulating ''Sanjiao-Yingwei'' Qi transformation, and hypoxia inducible factor-1α (HIF-1α) may be one of the main pathways to correct T cell exhaustion. It was found that HIF-1α may be one of the important prognostic indicators in common tumors by bioinformatics. The use of the ''Sanjiao-Yingwei'' Qi transformation method may play an important part in improving the prognosis of tumor patients in clinical practice.