1.Treatment of 100 Cases of Shoulder Periarthritis with Tuina and Acupuncture
Journal of Acupuncture and Tuina Science 2004;2(2):48-50
One hundred cases of shoulder periarthritis have been treated with Tuina manipulations round the shoulder joint, plus acupuncture on Fengchi (GB 20), Jianzhongshu (SI 15), Jianjing (GB 21),Tianzong (SI 11), Quchi (LI 11) and Hegu (LI 4), after 3 courses of the treatments, 82 cases were cured,18 cases were improved and all cases were effective.
2.Resveratrol promotes the survival and neuronal differentiation of hypoxia-conditioned neuronal progenitor cells in rats with cerebral ischemia.
Yao YAO ; Rui ZHOU ; Rui BAI ; Jing WANG ; Mengjiao TU ; Jingjing SHI ; Xiao HE ; Jinyun ZHOU ; Liu FENG ; Yuanxue GAO ; Fahuan SONG ; Feng LAN ; Xingguo LIU ; Mei TIAN ; Hong ZHANG
Frontiers of Medicine 2021;15(3):472-485
Hypoxia conditioning could increase the survival of transplanted neuronal progenitor cells (NPCs) in rats with cerebral ischemia but could also hinder neuronal differentiation partly by suppressing mitochondrial metabolism. In this work, the mitochondrial metabolism of hypoxia-conditioned NPCs (hcNPCs) was upregulated via the additional administration of resveratrol, an herbal compound, to resolve the limitation of hypoxia conditioning on neuronal differentiation. Resveratrol was first applied during the in vitro neuronal differentiation of hcNPCs and concurrently promoted the differentiation, synaptogenesis, and functional development of neurons derived from hcNPCs and restored the mitochondrial metabolism. Furthermore, this herbal compound was used as an adjuvant during hcNPC transplantation in a photothrombotic stroke rat model. Resveratrol promoted neuronal differentiation and increased the long-term survival of transplanted hcNPCs. 18-fluorine fluorodeoxyglucose positron emission tomography and rotarod test showed that resveratrol and hcNPC transplantation synergistically improved the neurological and metabolic recovery of stroke rats. In conclusion, resveratrol promoted the neuronal differentiation and therapeutic efficiency of hcNPCs in stroke rats via restoring mitochondrial metabolism. This work suggested a novel approach to promote the clinical translation of NPC transplantation therapy.
Animals
;
Brain Ischemia/drug therapy*
;
Cell Differentiation
;
Hypoxia
;
Neurons
;
Rats
;
Resveratrol/pharmacology*