1.Current status and progress on robot living donor liver hepatectomy
Xingfei LI ; Xiang LUO ; Tao LI
Organ Transplantation 2022;13(6):730-
With the emergence, development and innovation of minimally invasive surgical and laparoscopic technologies, minimally invasive technology has been gradually applied and promoted in different fields of surgery, and surgical indications have been constantly expanded. Robot-assisted surgical system has become a novel research hotspot due to its precision and minimal invasiveness. At present, robot-assisted surgical system can be applied in complex tumor surgery. How to apply robot-assisted surgery in the field of liver transplantation, especially in the living donor liver hepatectomy, has become a new research direction, which is also a challenge facing multiple scholars. In this article, the advantages of robot-assisted surgery, current status and major difficulties of robot living donor liver hepatectomy were reviewed, and the future of robot living donor liver hepatectomy was predicted, aiming to provide reference for promoting the application of robot-assisted surgery in clinical liver transplantation.
2. Tea and Citrus maxima complex induces apoptosis of human liver cancer cells via PI3K/AKT/mTOR pathway in vitro
Shuai WEN ; Junxi CAO ; Zhigang LI ; Wenji ZHANG ; Ruohong CHEN ; Qiuhua LI ; Xingfei LAI ; Lingli SUN ; Shili SUN ; Ran AN ; Dongli LI ; Dongli LI
Chinese Herbal Medicines 2022;14(3):449-458
Objective: In this study, black tea and Citrus maxima (BT-CM), yellow tea and C. maxima (YT-CM), green tea and C. maxima (GT-CM) as subjects, the active ingredient content and antioxidant activity of three tea and C. maxima (T-CM) were analyzed. The effects of three T-CMs on apoptosis of liver cells in vitro and its mechanism were further explored. Methods: National standard method and HPLC were used for active ingredient analysis. MTT, cell flow cytometry and Western blot were used to analyze the effects of three T-CMs on cell proliferation, apoptosis, and its underlying molecular mechanism. Results: The content of tea polyphenols, free amino acids, ratio of polyphenols and amino acids, ester catechins, non-ester catechins and caffeine in YT-CM and GT-CM was significantly higher than that of BT-CM. The in vitro antioxidant capacity of YT-CM and GT-CM was also significantly stronger than that of BT-CM. Three T-CMs had the effects of inhibiting proliferation, arresting cell cycle and inducing apoptosis in HepG2 and Bel7402 cells, especially YT-CM and GT-CM. Western blot analysis showed three T-CMs activated PI3K/AKT/mTOR signaling pathway and regulated the expression levels of apoptosis-related proteins Bax, Bcl-2 and Caspase-3/9. YT-CM and GT-CM had better ability to change the signal pathway than BT-CM. Conclusion: In short, T-CMs, which combined different degrees of fermentation tea with C. maxima, were rich in nutrients and biologically active substances. T-CMs, especially YT-CM and GT-CM, are healthy drinks that help to prevent and treat liver cancer.
3.Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury.
Dandan LUO ; Weihong GE ; Xiao HU ; Chen LI ; Chia-Ming LEE ; Liqiang ZHOU ; Zhourui WU ; Juehua YU ; Sheng LIN ; Jing YU ; Wei XU ; Lei CHEN ; Chong ZHANG ; Kun JIANG ; Xingfei ZHU ; Haotian LI ; Xinpei GAO ; Yanan GENG ; Bo JING ; Zhen WANG ; Changhong ZHENG ; Rongrong ZHU ; Qiao YAN ; Quan LIN ; Keqiang YE ; Yi E SUN ; Liming CHENG
Protein & Cell 2019;10(8):566-582
The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.