1.Efficacy and Mechanism of Action of Ermiao Situ Decoction in Modulating JAK/STAT Pathway in Rats with Damp-heat Eczema
Kangning HAN ; Junjie HU ; Juan LI ; Min ZHANG ; Xian ZHOU ; Songlin LIU ; Xin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):37-47
ObjectiveUltra performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) coupled with network pharmacology and molecular docking was utilized to explore the efficacy and mechanism of action of Ermiao Situ decoction on rats with damp-heat eczema. MethodsA rat model of damp-heat eczema was established by artificial climate chamber intervention combined with sensitization induction by dinitrochlorobenzene (DNCB), and it was randomly divided into the normal group, the model group, the medium- and high-dose groups of Ermiao Situ decoction (3.40 g·kg-1 and 6.80 g·kg-1), and the prednisone acetate group (2.51 mg·kg-1), with eight rats in each group, totalling 46 rats, of which six rats were tested with the drug-containing serum. The chemical analysis of drug-containing serum from rats was carried out by UPLC-Q-TOF-MS/MS, combined with network pharmacology for the prediction of key components, core targets, and signaling pathways, and molecular docking experiments were performed by CB-Dock2 online website. The pharmacological effects of Ermiao Situ decoction in the treatment of damp-heat eczema were investigated by epitaxial indexes combined with the pathologic tissue staining method. The serum levels of gastrin (GAS), interleukin-4 (IL-4), and interleukin-13 (IL-13) were measured by enzyme-linked immunosorbent assay (ELISA). Interleukin-6 (IL-6), Janus kinase 1 (JAK1), phosphorylated (p)-JAK1, signal transduction and activation of transcription factor 3 (STAT3), and p-STAT3 protein expression level was determined by Western bolt. ResultsA total of 19 active ingredients were detected in drug-containing serum samples of rats, which were predicted to act on 198 targets for the treatment of damp-heat eczema, among which the key ingredients included rhodopsin, huangpai alkaloids, and quercetin, and the main core targets included STAT3, tumor necrosis factor (TNF), and IL-6, which were mainly involved in the cancer signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase (Akt) signaling pathway, T helper 17 (Th17) cell differentiation signaling pathway, and JAK/STAT signaling pathway. The molecular docking results suggested that the key components had strong binding activities with the core targets IL-6, JAK1, and STAT3 in the JAK/STAT signaling pathway. The results of animal experiments showed that compared with those in the normal group, rats in the model group were depressed. They had loose hair, loose stools, epidermal oozing, vesiculation, and generation of thick scabs in the form of scales, decreased body weight, increased anus temperature and water intake, and increased indexes of the spleen, thymus gland, and stomach (P<0.05, P<0.01), and the lesion tissue could be seen to be hyperkeratotic, with the aggregation of inflammatory cells and nonsignificant separation of epidermis and dermis. The gastric mucosa was thinned, deficient, and structurally disorganized, and obvious inflammatory cell aggregation was seen. The levels of GAS, IL-4, and IL-13 in serum were significantly reduced (P<0.05, P<0.01), and the protein expression levels of IL-6, JAK1, p-JAK1, and p-STAT3 in the lesion tissue were significantly increased (P<0.05, P<0.01). Compared with those in the model group, rats in each administration group had stable mental states, formed feces, a clean perianal area, and basically normal epidermis. Only a small amount of scaly scabs existed, and the rats had body weight increased, with decreased anal temperature and water intake, as well as decreased spleen, thymus, and gastric indexes (P<0.05, P<0.01). Epidermal thickness was decreased, and epidermal and dermal separation boundaries were obvious, but hyperkeratotic and accumulation of inflammatory cells could still be seen. The thickness of gastric mucosa increased, and the structure was restored to varying degrees. The levels of GAS, IL-4, and IL-13 content in the serum of rats were increased to varying degrees, and the protein expression levels of IL-6, JAK1, p-JAK1, and p-STAT3 in the dermal lesion tissue were significantly decreased (P<0.05, P<0.01). ConclusionErmiao Situ decoction may exert therapeutic effects on rats with damp-heat eczema by modulating the JAK/STAT signaling pathway.
2.Influencing factors of neonatal red blood cell transfusion: a retrospective analysis
Na ZHOU ; Xin HE ; Yu SI ; Chen HOU ; Jialu CHEN ; Zhaohui TANG
Chinese Journal of Blood Transfusion 2025;38(3):375-381
[Objective] To analyze the effects of different factors and red blood cell transfusion thresholds on the efficacy of neonatal red blood cell (RBC) transfusion, in order to provide more references for neonatal transfusions to better achieve rational and effective blood use. [Methods] A retrospective collection of data from 282 neonates who received RBC transfusions at our hospital from 2022 to 2023 was conducted, including birth weight, gestational age, number of blood transfusions, length of hospital stay, assisted ventilation during RBC transfusion, and laboratory test results before and after transfusion. SPSS software was used for statistical analysis to comprehensively analyze the impact of different factors on the efficacy of RBC transfusion in neonates. [Results] The results showed that the gestational age and weight of newborns at birth were negatively correlated with their length of hospital stay and the number of RBC transfusions during hospitalization. Newborns with younger gestational age and lower weight had longer hospital stays and more RBC transfusions during hospitalization. After administering RBCs according to the standard of 15 mL/kg, there was a statistically significant difference in the efficacy of RBC transfusion at different transfusion thresholds. In non-critical situations, RBC transfusions were ineffective when the pre-transfusion hemoglobin (Hb) level was >120 g/L. When the pre-transfusion Hb level was ≤70 g/L, RBC transfusions achieved higher efficacy in both critical and non-critical situations. [Conclusion] In critical situations, the group with pre-transfusion Hb values ≤ 70 g/L has the best RBC transfusion effect, while in non-critical situations, the group with pre-transfusion Hb levels between 81 and 90 g/L has the best RBC transfusion effect. Overall, the efficacy of RBC transfusion in non-critical situations is higher than that in critical situations.
3.Bioethics and dignity in the capability approach
Chinese Medical Ethics 2025;38(3):352-356
Dignity is a core concept in bioethics. With the development of emerging life science technologies, maintaining human dignity has become the main reason for restricting the use and development of these new technologies. In bioethics, this dignity-based conservatism manifests in two forms, namely religious conservatism and secular conservatism. However, they face some difficulties respectively. Compared with conservatism, the concept of dignity advocated by the capability approach can not only avoid these difficulties but also provide a reasonable justification for people’s rational utilization and development of emerging biotechnologies.
4.A questionnaire survey and analysis on the current situation of forensic ethics practice and educational needs
Wenjie LUO ; Tiantian PAN ; Shiyue LI ; Mengjun ZHAN ; Lirong QIU ; Yuchi ZHOU ; Xin CHEN ; Fei FAN ; Zhenhua DENG
Chinese Medical Ethics 2025;38(3):378-384
ObjectiveTo explore the current situation of forensic ethics practice and education by designing a questionnaire on forensic ethics, with a view to exploring the path of forensic ethics education construction. MethodsA total of 667 valid questionnaires were collected using the online survey method, basically covering various regions across the country and all sub-specialties of forensic medicine. Descriptive analysis was used to analyze the relevant data. ResultsMost practitioners had relevant ethical reflections in the process of forensic practice. 69.12% of the respondents indicated that they had studied the relevant rules, but approximately half stated that there were no corresponding ethical norms or standard operating manuals. The specific behaviors violating ethics in different units were diverse. 23.04% of the respondents reported that they had encountered unethical behaviors, but only 4.9% of them reported such violations. In terms of forensic ethics education, 87.75% of the respondents believed that there were issues with the current model of forensic ethics education. Meanwhile, the respondents showed a high degree of recognition for receiving forensic ethics education, with 84.15% of respondents expressing willingness to participate in relevant courses. More than half of respondents were willing to participate in forensic ethics education during undergraduate studies, new employee training, and regular post-employment training. ConclusionCurrently, there is a problem of ethical neglect in forensic work in China. Combining ethics courses with professional courses at the practitioner training stage and providing regular training at the practice stage are effective measures to popularize forensic ethics knowledge, enhance ethical awareness, and improve the quality of practice.
5.The Ferroptosis-inducing Compounds in Triple Negative Breast Cancer
Xin-Die WANG ; Da-Li FENG ; Xiang CUI ; Su ZHOU ; Peng-Fei ZHANG ; Zhi-Qiang GAO ; Li-Li ZOU ; Jun WANG
Progress in Biochemistry and Biophysics 2025;52(4):804-819
Ferroptosis, a programmed cell death modality discovered and defined in the last decade, is primarily induced by iron-dependent lipid peroxidation. At present, it has been found that ferroptosis is involved in various physiological functions such as immune regulation, growth and development, aging, and tumor suppression. Especially its role in tumor biology has attracted extensive attention and research. Breast cancer is one of the most common female tumors, characterized by high heterogeneity and complex genetic background. Triple negative breast cancer (TNBC) is a special type of breast cancer, which lacks conventional breast cancer treatment targets and is prone to drug resistance to existing chemotherapy drugs and has a low cure rate after progression and metastasis. There is an urgent need to find new targets or develop new drugs. With the increase of studies on promoting ferroptosis in breast cancer, it has gradually attracted attention as a treatment strategy for breast cancer. Some studies have found that certain compounds and natural products can act on TNBC, promote their ferroptosis, inhibit cancer cells proliferation, enhance sensitivity to radiotherapy, and improve resistance to chemotherapy drugs. To promote the study of ferroptosis in TNBC, this article summarized and reviewed the compounds and natural products that induce ferroptosis in TNBC and their mechanisms of action. We started with the exploration of the pathways of ferroptosis, with particular attention to the System Xc--cystine-GPX4 pathway and iron metabolism. Then, a series of compounds, including sulfasalazine (SAS), metformin, and statins, were described in terms of how they interact with cells to deplete glutathione (GSH), thereby inhibiting the activity of glutathione peroxidase 4 (GPX4) and preventing the production of lipid peroxidases. The disruption of the cellular defense against oxidative stress ultimately results in the death of TNBC cells. We have also our focus to the realm of natural products, exploring the therapeutic potential of traditional Chinese medicine extracts for TNBC. These herbal extracts exhibit multi-target effects and good safety, and have shown promising capabilities in inducing ferroptosis in TNBC cells. We believe that further exploration and characterization of these natural compounds could lead to the development of a new generation of cancer therapeutics. In addition to traditional chemotherapy, we discussed the role of drug delivery systems in enhancing the efficacy and reducing the toxicity of ferroptosis inducers. Nanoparticles such as exosomes and metal-organic frameworks (MOFs) can improve the solubility and bioavailability of these compounds, thereby expanding their therapeutic potential while minimizing systemic side effects. Although preclinical data on ferroptosis inducers are relatively robust, their translation into clinical practice remains in its early stages. We also emphasize the urgent need for more in-depth and comprehensive research to understand the complex mechanisms of ferroptosis in TNBC. This is crucial for the rational design and development of clinical trials, as well as for leveraging ferroptosis to improve patient outcomes. Hoping the above summarize and review could provide references for the research and development of lead compounds for the treatment for TNBC.
6.Mass Spectrometry-based Cell Imaging
Peng ZHOU ; Xin WANG ; Qian LUO ; Chao ZHAO
Progress in Biochemistry and Biophysics 2025;52(4):858-868
Cell models can simulate a variety of life states and disease developments, including single cells, two-dimensional (2D) cell cultures, three-dimensional (3D) multicellular spheroids, and organoids. They are essential tools for addressing complex biochemical questions. With continuous advancements in biological and cellular analysis technologies, in vitro cellular models designed to answer scientific questions have evolved rapidly. Early in vitro models primarily relied on 2D systems, which failed to accurately replicate the complex cellular compositions and microenvironmental interactions observed in vivo, let alone support sophisticated investigations into cellular biological functions. Subsequent improvements in cell culture techniques led to the development of 3D culture-based models, such as cellular spheroids. The advent of pluripotent stem cell technology further advanced the development of organoid systems, which closely mimic human organ development. Compared to traditional 2D models, both 3D cellular models and organoids offer significant advantages, including personalization and enhanced physiological relevance, making them particularly suitable for exploring molecular mechanisms of disease progression, discovering novel cellular and biomolecular functions, and conducting related studies. The imaging analysis of common cellular models primarily employs labeling-based methods for in situ imaging of targeted genes, proteins, and small-molecule metabolites, enabling further research on cell types, states, metabolism, and drug efficacy. However, these approaches have drawbacks such as poor labeling specificity and complex experimental procedures. By using cells as experimental models, mass spectrometry technology combined with morphological analysis can reveal quantitative changes and spatial distributions of various biological substances at the spatiotemporal level, including metabolites, proteins, lipids, peptides, drugs, environmental pollutants, and metals. This allows for the investigation of cell-cell interactions, tumor microenvironments, and cellular bioinformational heterogeneity. The application of these cutting-edge imaging technologies generates vast amounts of cellular data, necessitating the development of rapid, efficient, and highly accurate image data algorithms for precise segmentation and identification of single cells, multi-organelle structures, rare cell subpopulations, and complex cellular morphologies. A critical focus lies in creating deep learning models and algorithms that enhance the accuracy of cellular visualization. At the same time, establishing more robust data integration tools is essential not only for analyzing and interpreting outputs but also for effectively uncovering the biological significance of spatially resolved mass spectrometry data. Developing a cell imaging platform with high versatility, operational stability, and specificity to enable data interoperability will significantly enhance its utility in clinical research, thereby advancing investigations into disease molecular mechanisms and supporting precision diagnostics and therapeutics. In contrast to genomic, transcriptomic, and proteomic information, the metabolome can rapidly respond to external stimuli and cellular physiological changes within a short timeframe. This rapid and precise reflection of ongoing cellular state alterations has positioned spatial metabolomics as a pivotal approach for exploring the molecular mechanisms underlying physiological and pathological processes in cells, tissues, and organisms. In this review, we summarize research on cell imaging based on mass spectrometry technologies, including the selection and preparation of cell models, morphological analysis of cell models, spatial omics techniques based on mass spectrometry, mass cytometry, and their applications. We also discuss the current challenges and propose future directions for development in this field.
7.Effect of The Hydrophilic Amino Acids on Self-assembly Behavior of Short Bola-like Peptides
Xin-Xin GAO ; Yu HAN ; Yi-Lin ZHOU ; Xi-Ya CHEN ; Yu-Rong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1290-1301
ObjectiveBola-like short peptides exhibit novel self-assembly properties due to the formation of peptide dimers via hydrogen bonding interactions between their C-terminals. In this configuration, hydrophilic amino acids are distributed at both terminals, making these peptides behave similarly to Bola peptides. The electrostatic repulsive interactions arising from the hydrophilic amino acids at each terminal can be neutralized, thereby greatly promoting the lateral association of β-sheets. Consequently, assemblies with significantly larger widths are typically the dominant nanostructures for Bola-like peptides. To investigate the effect of hydrophilic amino acids on the self-assembly behavior of Bola-like peptides, the peptides Ac-RI3-CONH2 and Ac-HI3-CONH2 were designed and synthesized using the Bola-like peptide Ac-KI3-CONH2 as a template. Their self-assembly behavior was systematically examined. MethodsAtomic force microscopy (AFM) and transmission electron microscopy (TEM) were employed to characterize the morphology and size of the assemblies. The secondary structures of the assemblies were analyzed using circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Small-angle neutron scattering (SANS) was used to obtain detailed structural information at a short-length scale. Based on these experimental results, the effects of hydrophilic amino acids on the self-assembly behavior of Bola-like short peptides were systematically analyzed, and the underlying formation mechanism was explored. ResultsThe aggregation process primarily involved three steps. First, peptide dimers were formed through hydrogen bonding interactions between their C-terminals. Within these dimers, the hydrophilic amino acids K, R, and H were positioned at both terminals, enabling the peptides to self-assemble in a manner similar to Bola peptides. Next, β-sheets were formed via hydrogen bonding interactions along the peptide backbone. Finally, self-assemblies were generated through the lateral association of β-sheets. The results demonstrated that both Ac-KI3-CONH2 and Ac-RI3-CONH2 could self-assemble into double-layer nanotubes with diameters of approximately 200 nm. These nanotubes were formed by the edge fusion of helical ribbons, which initially emerged from twisted ribbons. Notably, the primary assemblies of these peptides exhibited opposite chirality: nanofibers formed by Ac-KI3-CONH2 displayed left-handed chirality, whereas those formed by Ac-RI3-CONH2 exhibited right-handed chirality. This reversal in torsional direction was primarily attributed to the different abilities of K and R to form hydrogen bonds with water. In contrast, Ac-HI3-CONH2 formed narrower twisted ribbons with a significantly reduced width of approximately 30 nm, which was attributed to the strong steric hindrance caused by the imidazole rings. The multilayer height of these ribbons was mainly due to the unique structure of the imidazole rings, which can function as both hydrogen bond donors and acceptors, thereby promoting aggregate growth in the vertical direction. ConclusionThe final morphology of the self-assemblies resulted from a delicate balance of various non-covalent interactions. By altering the types of hydrophilic amino acid residues in Bola-like short peptides, the relative strength of non-covalent interactions that drive assembly formation can be effectively regulated, allowing precise control over the morphology and chirality of the assemblies. This study provides a simple and effective approach for constructing diverse self-assemblies and lays a theoretical foundation for the development of functional biomaterials.
8.Clinical Efficacy of Zhuyuwan in Treatment of Hyperlipidemia with Syndrome of Phlegm Turbidity and Obstruction
Lele YANG ; Danmei LUO ; Jiao CHEN ; Xiaobo ZHANG ; Wei SONG ; Wenyu ZHU ; Xin ZHOU ; Xueping LI ; Tao SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):29-37
ObjectiveTo observe the clinical efficacy and safety of Zhuyuwan in the treatment of hyperlipidemia. MethodsIn this study, hyperlipidemia patients treated in the Hospital of Chengdu University of Traditional Chinese Medicine (TCM) from September 2022 to December 2023 were randomly assigned into a control group and an observation group. Finally, 162 valid cases were included, encompassing 74 cases in the control group and 88 cases in the observation group. The control group was treated with atorvastatin calcium tablets, and the observation group with atorvastatin calcium tablets + Zhuyuwan extract granules. Both groups were treated for 8 weeks. The efficacy in terms of blood lipid level recovery, blood lipid levels, TCM syndrome distribution, efficacy in terms of TCM syndrome, and TCM symptom scores were compared between the two groups as well as between before and after treatment. Liver and kidney functions were monitored for safety assessment. ResultsIn terms of blood lipid level recovery, the total response rate in the observation group was 86.36% (76/88) and that in the control group was 86.49% (64/74), with no statistically significant difference between the two groups. After treatment, both groups showed declines in levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) (P<0.05) and elevations in the level of high-density lipoprotein cholesterol (HDL-C) (P<0.05). Moreover, the observation group outperformed the control group in recovering the levels of TG, LDL-C, and HDL-C (P<0.05, P<0.01). In terms of TCM syndrome, hyperlipidemia was mostly caused by phlegm turbidity and obstruction. The total response rate in terms of TCM syndrome in the observation group was 87.30% (55/63), which was higher than that (63.46%, 33/52) in the control group (χ2=9.102, P<0.01). After treatment, the scores of total TCM symptoms, primary symptoms, and secondary symptoms decreased in both groups (P<0.05), and the observation group had lower scores than the control group (P<0.01). The observation group was superior to the control group in alleviating obesity, chest tightness, and low food intake (P<0.05). In terms of safety, the level of aminotransferase was slightly elevated in the control group, and no obvious adverse reaction was observed in the observation group, with no statistical significance in the incidence of adverse reactions. ConclusionZhuyuwan combined with atorvastatin can not only recover blood lipid levels and alleviate TCM symptoms but also reduce the occurrence of adverse reactions.
9.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
10.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.

Result Analysis
Print
Save
E-mail