1.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
2.Generalized Functional Linear Models: Efficient Modeling for High-dimensional Correlated Mixture Exposures.
Bing Song ZHANG ; Hai Bin YU ; Xin PENG ; Hai Yi YAN ; Si Ran LI ; Shutong LUO ; Hui Zi WEIREN ; Zhu Jiang ZHOU ; Ya Lin KUANG ; Yi Huan ZHENG ; Chu Lan OU ; Lin Hua LIU ; Yuehua HU ; Jin Dong NI
Biomedical and Environmental Sciences 2025;38(8):961-976
OBJECTIVE:
Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health. Analysis of these mixture exposures presents several key challenges for environmental epidemiology and risk assessment, including high dimensionality, correlated exposure, and subtle individual effects.
METHODS:
We proposed a novel statistical approach, the generalized functional linear model (GFLM), to analyze the health effects of exposure mixtures. GFLM treats the effect of mixture exposures as a smooth function by reordering exposures based on specific mechanisms and capturing internal correlations to provide a meaningful estimation and interpretation. The robustness and efficiency was evaluated under various scenarios through extensive simulation studies.
RESULTS:
We applied the GFLM to two datasets from the National Health and Nutrition Examination Survey (NHANES). In the first application, we examined the effects of 37 nutrients on BMI (2011-2016 cycles). The GFLM identified a significant mixture effect, with fiber and fat emerging as the nutrients with the greatest negative and positive effects on BMI, respectively. For the second application, we investigated the association between four pre- and perfluoroalkyl substances (PFAS) and gout risk (2007-2018 cycles). Unlike traditional methods, the GFLM indicated no significant association, demonstrating its robustness to multicollinearity.
CONCLUSION
GFLM framework is a powerful tool for mixture exposure analysis, offering improved handling of correlated exposures and interpretable results. It demonstrates robust performance across various scenarios and real-world applications, advancing our understanding of complex environmental exposures and their health impacts on environmental epidemiology and toxicology.
Humans
;
Environmental Exposure/analysis*
;
Linear Models
;
Nutrition Surveys
;
Environmental Pollutants
;
Body Mass Index
3.Clinical Efficacy and Safety of Ixazomib-Containing Regimens in the Treatment of Patients with Multiple Myeloma
Ran CHEN ; Lian-Guo XUE ; Hang ZHOU ; Tao JIA ; Zhi-Mei CAI ; Yuan-Xin ZHU ; Lei MIAO ; Ji-Feng WEI ; Li-Dong ZHAO ; Jian-Ping MAO
Journal of Experimental Hematology 2024;32(2):483-492
Objective:To investigate the clinical efficacy and safety of ixazomib-containing regimens in the treatment of patients with multiple myeloma(MM).Methods:A retrospective analysis was performed on the clinical efficacy and adverse reactions of 32 MM patients treated with a combined regimen containing ixazomib in the Hematology Department of the First People's Hospital of Lianyungang from January 2020 to February 2022.Among the 32 patients,15 patients were relapsed and refractory multiple myeloma(R/RMM)(R/RMM group),17 patients who responded to bortezomib induction therapy but converted to ixazomib-containing regimen due to adverse events(AE)or other reasons(conversion treatment group).The treatment included IPD regimen(ixazomib+pomalidomide+dexamethasone),IRD regimen(ixazomib+lenalidomide+dexamethasone),ICD regimen(ixazomib+cyclophosphamide+dexamethasone),ID regimen(ixazomib+dexamethasone).Results:Of 15 R/RMM patients,overall response rate(ORR)was 53.3%(8/15),among them,1 achieved complete response(CR),2 achieved very good partial response(VGPR)and 5 achieved partial response(PR).The ORR of the IPD,IRD,ICD and ID regimen group were 100%(3/3),42.9%(3/7),33.3%(1/3),50%(1/2),respectively,there was no statistically significant difference in ORR between four groups(x2=3.375,P=0.452).The ORR of patients was 50%after first-line therapy,42.9%after second line therapy,60%after third line therapy or more,with no statistically significant difference among them(x2=2.164,P=0.730).In conversion treatment group,ORR was 88.2%(15/17),among them,6 patients achieved CR,5 patients achieved VGPR and 4 patients achieved PR.There was no statistically significant difference in ORR between the IPD(100%,3/3),IRD(100%,6/6),ICD(100%,3/3)and ID(60%,3/5)regimen groups(x2=3.737,P=0.184).The median progression-free survival(PFS)time of R/RMM patients was 9 months(95%CI:6.6-11.4 months),the median overall survival(OS)time was 18 months(95%CI:11.8-24.4 months).The median PFS time of conversion treatment group was 15 months(95%CI:7.3-22.7 months),the median OS time not reached.A total of 10 patients suffered grade 3-4 adverse event(AE).The common hematological toxicities were leukocytopenia,anemia,thrombocytopenia.The common non-hematological toxicities were gastrointestinal symptoms(diarrhea,nausea and vomit),peripheral neuropathy,fatigue and infections.Grade 1-2 peripheral neurotoxicity occurred in 7 patients.Conclusion:The ixazomib-based chemotherapy regimens are safe and effective in R/RMM therapy,particularly for conversion patients who are effective for bortezomib therapy.The AE was manageable and safe.
4.Research progress on neurobiological mechanisms underlying antidepressant effect of ketamine
Dong-Yu ZHOU ; Wen-Xin ZHANG ; Xiao-Jing ZHAI ; Dan-Dan CHEN ; Yi HAN ; Ran JI ; Xiao-Yuan PAN ; Jun-Li CAO ; Hong-Xing ZHANG
Chinese Pharmacological Bulletin 2024;40(9):1622-1627
Major depressive disorder(MDD)is a prevalent con-dition associated with substantial impairment and low remission rates.Traditional antidepressants demonstrate delayed effects,low cure rate,and inadequate therapeutic effectiveness for man-aging treatment-resistant depression(TRD).Several studies have shown that ketamine,a non-selective N-methyl-D-aspartate receptor(NMDAR)antagonist,can produce rapid and sustained antidepressant effects.Ketamine has demonstrated efficacy for reducing suicidality in TRD patients.However,the pharmaco-logical mechanism for ketamine's antidepressant effects remains incompletely understood.Previous research suggests that the an-tidepressant effects of ketamine may involve the monoaminergic,glutamatergic and dopaminergic systems.This paper provides an overview of the pharmacological mechanism for ketamine's anti-depressant effects and discuss the potential directions for future research.
5.Research progress on molecular mechanism underlying neuropsychiatric diseases involving NMDA receptor and α2 adrenergic receptor
Wen-Xin ZHANG ; Dong-Yu ZHOU ; Yi HAN ; Ran JI ; Lin AI ; An XIE ; Xiao-Jing ZHAI ; Jun-Li CAO ; Hong-Xing ZHANG
Chinese Pharmacological Bulletin 2024;40(12):2206-2212
Glutamate,norepinephrine,and their receptors com-prise the glutamatergic and norepinephrine systems,which mu-tually affect each other and play essential roles in mediating vari-ous neuropsychiatric diseases.This paper reviews the functions of N-methyl-D-aspartate receptor(NMDA-R)and α2-adrenergic receptor(α2-AR)and their functional crosstalk at the molecular level in brain in common neuropsychiatric diseases,which would benefit our understanding of neuropathophysiology of psychiatric diseases,drug development and optimization of clinical neuro-psychopharmacology.
6.Effect of Cinobufacini on HepG2 cells based on CXCL5/FOXD1/VEGF pathway
Xiao-Ke RAN ; Xu-Dong LIU ; Hua-Zhen PANG ; Wei-Qiang TAN ; Tie-Xiong WU ; Zhao-Quan PAN ; Yuan YUAN ; Xin-Feng LOU
Chinese Pharmacological Bulletin 2024;40(12):2361-2368
Aim To investigate the impact of Cinobu-facini on the proliferation,invasion,and apoptosis of HepG2 cells and the underlying mechanism.Methods The proliferation of HepG2 cells was assessed using the CCK-8 method following treatment with Cinobufaci-ni.The invasion capability of HepG2 cells was evalua-ted through Transwell assay after exposure to Cinobufa-cini.The apoptosis rates of HepG2 cells post Cinobufa-cini intervention were measured using flow cytometry,and the expression levels of VEGF in the culture medi-um of HepG2 cells were determined using enzyme-linked immunoassay.Furthermore,qRT-PCR and Western blot analyses were conducted to assess the im-pact of Cinobufacini on mRNA and protein expression levels related to the CXCL5/FOXD1/VEGF pathway.The interaction between CXCL5 and FOXD1 was inves-tigated via co-immunoprecipitation.Results Cinobufa-cini treatment led to a gradual decrease in HepG2 cell viability in a dose-dependent manner compared to the control group(P<0.05).Moreover,Cinobufacini sig-nificantly suppressed HepG2 cell invasion(P<0.05)while enhancing cell apoptosis(P<0.05).Notably,Cinobufacini exhibited inhibitory effects on the CX-CL5/FOXD1/VEGF pathway,as evidenced by re-duced expression of related mRNA and proteins(P<0.05).FOXD1 was identified as the binding site of CXCL5.Overexpression of CXCL5 resulted in in-creased proliferation and VEGF secretion by HepG2 cells(P<0.05),and increased expression of FOXD1 and VEGF(P<0.05).However,Cinobufacini inter-vention effectively inhibited liver cancer cell prolifera-tion and invasion(P<0.05),promoted apoptosis(P<0.05),reduced VEGF secretion by HepG2 cells(P<0.05),and downregulated the expression of CXCL5 and FOXD1 in HepG2 cells(P<0.05);but com-pared with the unexpressed group of Cinobufacini,its ability to inhibit cell activity was weakened(P<0.05),and its ability to inhibit the expression of CX-CL5,FOXD1,and VEGF was weakened(P<0.05).Conclusion Cinobufacini may inhibit HepG2 cell pro-liferation and invasion and promote HepG2 cell apopto-sis by regulating the CXCL5/FOXD1/VEGF pathway.
9.Effect of recombinant human growth hormone on serum Klotho and fibroblast growth factor 23 in children with idiopathic short stature.
Han-Han DONG ; Meng-Meng LI ; Meng SUN ; Ran ZHOU ; Xin-Ying ZHANG ; Ya-Ying CHENG
Chinese Journal of Contemporary Pediatrics 2023;25(11):1143-1149
OBJECTIVES:
To investigate the changes in the serum levels of Klotho, fibroblast growth factor 23 (FGF23), and insulin-like growth factor-1 (IGF-1) in children with idiopathic short stature (ISS) before and after recombinant human growth hormone (rhGH) treatment, as well as the correlation of Klotho and FGF23 with the growth hormone (GH)/IGF-1 growth axis in these children.
METHODS:
A prospective study was conducted on 33 children who were diagnosed with ISS in the Department of Pediatrics, Hebei Provincial People's Hospital, from March 10, 2021 to December 1, 2022 (ISS group). Twenty-nine healthy children, matched for age and sex, who attended the Department of Child Healthcare during the same period, were enrolled as the healthy control group. The children in the ISS group were treated with rhGH, and the serum levels of Klotho, FGF23, and IGF-1 were measured before treatment and after 3, 6, and 9 months of treatment. A correlation analysis was conducted on these indexes.
RESULTS:
There were no significant differences in the serum levels of IGF-1, Klotho, and FGF23 between the ISS and healthy control groups (P>0.05). The serum levels of Klotho, FGF23, and IGF-1 increased significantly in the ISS group after 3, 6, and 9 months of rhGH treatment (P<0.05). In the ISS group, Klotho and FGF23 levels were positively correlated with the phosphate level before treatment (P<0.05). Before treatment and after 3, 6, and 9 months of rhGH treatment, the Klotho level was positively correlated with the IGF-1 level (P<0.05), the FGF23 level was positively correlated with the IGF-1 level (P<0.05), and the Klotho level was positively correlated with the FGF23 level (P<0.05), while Klotho and FGF23 levels were not correlated with the height standard deviation of point (P>0.05).
CONCLUSIONS
The rhGH treatment can upregulate the levels of Klotho, FGF23, and IGF-1 and realize the catch-up growth in children with ISS. Klotho and FGF23 may not directly promote the linear growth of children with ISS, but may have indirect effects through the pathways such as IGF-1 and phosphate metabolism. The consistent changes in Klotho, FGF23 and IGF-1 levels show that there is a synergistic relationship among them in regulating the linear growth of ISS children.
Child
;
Humans
;
Human Growth Hormone/pharmacology*
;
Insulin-Like Growth Factor I/pharmacology*
;
Fibroblast Growth Factor-23
;
Prospective Studies
;
Growth Disorders
;
Phosphates/pharmacology*
;
Body Height
10.Efficacy of microwave ablation versus radiofrequency ablation in the treatment of colon cancer liver metastases: a meta-analysis
Dongmei LAN ; Xiaozhun HUANG ; Yihong RAN ; Lin XU ; Dong CHEN ; Xin YIN ; Xu CHE ; Jianjun ZHAO ; Xinyu BI ; Shubin WANG
Chinese Journal of Hepatobiliary Surgery 2023;29(2):129-134
Objective:To explore the best treatment for local ablation of colon cancer liver metastases (CRLM) by meta-analysis.Methods:The electronic databases of PubMed, Web of Science, Embase, CNKI and the Cochrane Library were searched from the establishment to August 22, 2022, and studies that report outcomes with comparison between microwave ablation (WMA) and radiofrequency ablation (RFA) in CRLM treatment were selected by inclusion and exclusion criteria. Furthermore, the perioperative and survival data were statistically summarized and analyzed by Review Manager 5.3 software.Results:A total of 5 retrospective studies were included with a total sample size of 648 cases, including 316 cases (48.8%) in the WMA group and 332 cases (51.2%) in the RFA group. The results of meta-analysis showed that locoregional recurrence rate in WMA group was significantly lower than that in RFA group. The 1-year and 2-year disease-free survival (DFS) of the WMA group was significantly better than that of the RFA group with HR of 1.77 ( P=0.04, 95% CI: 1.04-3.02) and 1.60 ( P=0.02, 95% CI: 1.09-2.35), respectively. Conclusion:The local control rate and 1-year and 2-year DFS of WMA were superior to RFA.

Result Analysis
Print
Save
E-mail