1.Research of injury mapping relationship of lumbar spine in reclined occupants between anthropomorphic test devices and human body model.
Yu LIU ; Jing FEI ; Xin-Ming WAN ; Pei-Feng WANG ; Zhen LI ; Xiao-Ting YANG ; Lin-Wei ZHANG ; Zhong-Hao BAI
Chinese Journal of Traumatology 2025;28(2):130-137
PURPOSE:
To judge the injury mode and injury severity of the real human body through the measured values of anthropomorphic test devices (ATD) injury indices, the mapping relationship of lumbar injury between ATD and human body model (HBM) was explored.
METHODS:
Through the ATD model and HBM simulation, the mapping relationship of lumbar injury between the 2 subjects was explored. The sled environment consisted of a semi-rigid seat with an adjustable seatback angle and a 3-point seat belt system with a seatback-mounted D-ring. Three seatback recline states of 25°, 45°, and 65° were designed, and the seat pan angle was maintained at 15°. A 23 g, 47 km/h pulse was used. The validity of the finite element model of the sled was verified by the comparison of ATD simulation and test results. ATD model was the test device for human occupant restraint for autonomous vehicles (THOR-AV) dummy model and HBM was the total human model for safety (THUMS) v6.1. The posture of the 2 models was adjusted to adapt to the 3 seat states. The lumbar response of THOR-AV and the mechanical and biomechanical data on L1 - L5 vertebrae of THUMS were output, and the response relationship between THOR-AV and THUMS was descriptive statistically analyzed.
RESULTS:
Both THOR-AV and THUMS were submarined in the 65° seatback angle case. With the change of seatback angle, the lumbar spine axial compression force (Fz) of THOR-AV and THUMS changed in the similar trend. The maximum Fz ratio of THOR-AV to THUMS at 25° and 45° seatback angle cases were 1.6 and 1.7. The flexion moment (My) and the time when the maximum My occurred in the 2 subjects were very different. In particular, the form of moment experienced by the L1 - L5 vertebrae of THUMS also changed. The changing trend of My measured by THOR-AV over time can reflect the changing trend of maximum stress of L1 and L2 of THUMS.
CONCLUSION
The Fz of ATD and HBM presents a certain proportional relationship, and there is a mapping relationship between the 2 subjects on Fz. The mapping function can be further clarified by applying more pulses and adopting more seatback angles. It is difficult to map My directly because they are very different in ATD and HBM. The My of ATD and stress of HBM lumbar showed a similar change trend over time, and there may be a hidden mapping relationship.
Humans
;
Lumbar Vertebrae/injuries*
;
Finite Element Analysis
;
Biomechanical Phenomena
;
Manikins
;
Spinal Injuries/physiopathology*
2.Research progress in drug carriers across the blood-brain barrier
Wan-xin CAO ; Yi-hui YANG ; Hong YANG ; Sen ZHANG ; Yi-zhi ZHANG ; Fang XU ; Wan LI ; Yue HAO ; Xiao-xue LI ; Xu ZHANG ; Guan-hua DU ; Jin-hua WANG
Acta Pharmaceutica Sinica 2024;59(12):3222-3231
The blood-brain barrier (BBB) plays a crucial role in maintaining the homeostasis of the brain's internal environment, which poses challenges to the treatment of central nervous system diseases. Drug carriers can aid in the delivery of therapeutic agents across the BBB to exert their pharmacological effects. The article reviewed the pathways for drug delivery across the BBB, the intracerebral fate and the classification of drug carriers and focuses on the functions and characteristics of liposomes, exosomes, apoptotic bodies, cell-penetrating peptides, and cell-targeting peptides. The review will provide an outlook on the future and challenge of research in the field of drug delivery across the BBB.
3.Rapid non-destructive detection technology for traditional Chinese medicine preparations based on machine learning: a review.
Xin-Hao WAN ; Qing TAO ; Zi-Qian WANG ; Dong-Yin YANG ; Zhi-Jian ZHONG ; Xiao-Rong LUO ; Ming YANG ; Xue-Cheng WANG ; Zhen-Feng WU
China Journal of Chinese Materia Medica 2024;49(24):6541-6548
In recent years, with the increasing societal focus on drug quality and safety, quality issues have become a major challenge faced by the pharmaceutical industry, directly impacting consumer health and market trust. By combining multispectral imaging technology with machine learning, it is possible to achieve rapid, non-destructive, and precise detection of traditional Chinese medicine(TCM) preparations, thereby revolutionizing traditional detection methods and developing more convenient and automated solutions. This paper provides a comprehensive review of the current applications of rapid, non-destructive detection techniques based on machine learning algorithms in the field of TCM preparations. It analyzed the principles and advantages of commonly used rapid, non-destructive detection techniques, offering a reference for the application and promotion of these technologies in TCM preparation detection. Additionally, this paper explored various data preprocessing techniques, operational processes, and machine learning algorithms to enhance data utilization efficiency. Finally, it focused on the challenges of applying machine learning in TCM preparation detection and offered corresponding recommendations, providing guidance for the future integration of machine learning with rapid, non-destructive detection techniques in practical production.
Machine Learning
;
Drugs, Chinese Herbal/analysis*
;
Medicine, Chinese Traditional/methods*
;
Humans
;
Quality Control
4.Selection and reflection on ecological fine manufacturing model of traditional Chinese medicine under "dual carbon" goals.
Dong-Yin YANG ; Zi-Qian WANG ; Xin-Hao WAN ; Ying LIU ; Meng-Xin HUANG ; Xiang WANG ; Wei-Feng ZHU ; Zhen-Feng WU
China Journal of Chinese Materia Medica 2024;49(24):6549-6557
At present, China's traditional Chinese medicine(TCM) industry is developing rapidly with the support of modern science and technology. While promoting economic development and improving national health, it has brought multiple environmental problems. Under the "dual carbon" goals, the ecological fine manufacturing of TCM may become one of the breakthroughs for the TCM industry to practice low-carbon economy. From the perspective of low-carbon economy and considering the current situation of TCM pharmaceutical manufacturing, this paper analyzes the problems and shortcomings of the TCM pharmaceutical industry. In view of the key factors influencing the quality of TCM preparations under the ecological fine manufacturing mode, this paper proposes a practical and feasible selection plan for the ecological fine manufacturing mode of TCM, aiming to provide research ideas and a theoretical basis for the TCM industry in helping to achieve the goals of carbon peaking and carbon neutrality.
Drugs, Chinese Herbal/economics*
;
Medicine, Chinese Traditional
;
Carbon/analysis*
;
China
;
Drug Industry/economics*
5.Determination of physical properties and calibration of discrete element simulation parameters for Jianwei Xiaoshi Granules.
Zi-Qian WANG ; Fan WU ; Zhi-Jian ZHONG ; Xiao-Rong LUO ; Xin-Hao WAN ; Jia-Li LIAO ; Qing TAO ; Zhen-Feng WU
China Journal of Chinese Materia Medica 2024;49(24):6558-6564
The construction method and simulation parameter settings for the discrete element model of Jianwei Xiaoshi Granules, as the primary material of Jianwei Xiaoshi Tablets, are not yet clear. The accuracy of the simulation model significantly influences the dynamic response characteristics between granules. Therefore, it is necessary to calibrate the parameters to improve the accuracy of the simulation parameters. Using the repose angle of Jianwei Xiaoshi Granules as the response value, the response surface methodology was employed to optimize and calibrate the discrete element parameters. Physical experiments were conducted to determine the physical properties of Jianwei Xiaoshi Granules. Based on the Hertz-Mindlin with Johnson-Kendall-Roberts(JKR) V2 model and virtual simulation methods, a repose angle determination model was constructed in EDEM software. The repose angle was measured using image analysis and numerical fitting methods. The Plackett-Burman experiment was used to screen the initial parameters for significance in the discrete element simulation. The significant parameters were then subjected to a steepest ascent experiment to determine the optimal parameter range. Furthermore, based on the Box-Behnken experiment, a second-order regression equation between significant parameters and repose angle was established, with the repose angle of 37.64° in the physical experiment as the target value. The regression equation was optimized and solved. The significance screening experiment revealed that the granule-granule static friction coefficient, granule-granule rolling friction, and granule-steel plate rolling friction of Jianwei Xiaoshi Granules significantly influenced the simulated repose angle. The optimal parameter combination was found to be 0.330, 0.222, and 0.229. The simulation results with this optimal parameter combination showed that there was no significant difference between the simulated repose angle and the repose angle obtained in the physical experiment, with a relative error of 0.05%, which further validated the reliability of the calibrated discrete element parameters for Jianwei Xiaoshi Granules.
Drugs, Chinese Herbal/chemistry*
;
Calibration
;
Computer Simulation
6.Identification of CMAs of Jianwei Xiaoshi Tablet granules based on QbD concept and construction of their predictive model.
Xin-Hao WAN ; Zhi-Jian ZHONG ; Qing TAO ; Zi-Qian WANG ; Jia-Li LIAO ; Dong-Yin YANG ; Ming YANG ; Xiao-Rong LUO ; Zhen-Feng WU
China Journal of Chinese Materia Medica 2024;49(24):6565-6573
Identification of critical material attributes(CMAs) is a key issue in the quality control of large-scale TCM products like Jianwei Xiaoshi Tablets. This study focuses on the granules of Jianwei Xiaoshi Tablets, using tablet tensile strength as the primary quality attribute. A method for identifying the CMAs and a design space for the granules were established, along with a predictive model for the granule CMAs based on Fourier transform near-infrared spectroscopy(FT-NIR). First, granules of Jianwei Xiaoshi Tablets with different properties were prepared using a partial factorial design method from the design of experiments(DOE). The powder properties of the granules were measured. An orthogonal partial least squares(OPLS) model was established to correlate the powder properties with tensile strength. Based on the characteristics of the comprehensive variables extracted by OPLS, the independent variables with the greatest explanatory power for tensile strength were identified. FT-NIR technology was then employed to establish a predictive model for the granule CMAs. The final CMAs identified were hygroscopicity, moisture content, D_(50), collapse angle, mass flow rate, and tapped density. The coefficients of determination of the prediction set(R■) and relative percentage deviation(RPD) of the prediction set for flowability, D_(50), and moisture content were 0.891, 0.994, and 0.998; and 2.97, 12.4, and 20.7, respectively. The established OPLS model clearly identified the impact of various factors on tensile strength, demonstrating good fit results. The model exhibited high prediction accuracy and can be used for the rapid and accurate determination of CMAs in granules of Jianwei Xiaoshi Tablets.
Drugs, Chinese Herbal/chemistry*
;
Tablets/chemistry*
;
Tensile Strength
;
Quality Control
;
Spectroscopy, Fourier Transform Infrared
;
Spectroscopy, Near-Infrared
7.Application progress on data-driven technologies in intelligent manufacturing of traditional Chinese medicine extraction.
Xin-Rong MA ; Bei-Xuan WANG ; Wan-Shun ZHAO ; De-Gang CONG ; Wei SUN ; Hao-Shu XIONG ; Shun-Nan ZHANG
China Journal of Chinese Materia Medica 2023;48(21):5701-5706
The application of new-generation information technologies such as big data, the internet of things(IoT), and cloud computing in the traditional Chinese medicine(TCM)manufacturing industry is gradually deepening, driving the intelligent transformation and upgrading of the TCM industry. At the current stage, there are challenges in understanding the extraction process and its mechanisms in TCM. Online detection technology faces difficulties in making breakthroughs, and data throughout the entire production process is scattered, lacking valuable mining and utilization, which significantly hinders the intelligent upgrading of the TCM industry. Applying data-driven technologies in the process of TCM extraction can enhance the understanding of the extraction process, achieve precise control, and effectively improve the quality of TCM products. This article analyzed the technological bottlenecks in the production process of TCM extraction, summarized commonly used data-driven algorithms in the research and production control of extraction processes, and reviewed the progress in the application of data-driven technologies in the following five aspects: mechanism analysis of the extraction process, process development and optimization, online detection, process control, and production management. This article is expected to provide references for optimizing the extraction process and intelligent production of TCM.
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal
;
Quality Control
;
Big Data
;
Algorithms
8.Research progress in drugs targeting tumor associated macrophage
Li-wen REN ; Yi-hui YANG ; Wan LI ; Yi-zhi ZHANG ; Hong YANG ; Sen ZHANG ; Fang XU ; Yue HAO ; Wan-xin CAO ; Guan-hua DU ; Jin-hua WANG
Acta Pharmaceutica Sinica 2023;58(12):3508-3518
Tumor brings great threat to human public health. In recent years, incidence rate and mortality of tumor were rapidly increased in the world. Anti-tumor therapies have undergone the development of cytotoxic therapy, targeted therapy, and immunotherapy. Among them, tumor immunotherapy is rapidly developed and becomes an important anti-tumor therapy in recent years, although it also brings some related side effects. Tumor microenvironment (TME) is composed of immune cells, vascular vessels, fibroblasts, the extracellular matrix, etc. TME significantly affects the efficacy of immunotherapy. Macrophages in the TME are named as tumor associated macrophages (TAMs). Recently, increasing studies have shown that TAMs play an important role in the regulation of tumor immunity, especially in tumor immune surveillance and immune escape. Currently, more and more anti-tumor immunotherapy strategies targeting TAMs are at the development stage. Based on the important role of TAMs in the TME and their potential as therapeutic targets in tumor immunotherapy, we first reviewed the subtypes and functions of TAMs, as well as the roles of TAMs in tumors. Furthermore, we summarized the research progress on anti-tumor strategies targeting TAMs and the current status of drug targeting TAMs. The current review will provide new ideas and novel insights for tumor immunotherapy.
9.Mori Folium Improves Glucose and Lipid Metabolism Disorders in Rats with Type 2 Diabetes Mellitus by Regulating PI3K/Akt/PPARα/CPT-1 Pathway
Hong-yu DAI ; Jing-kang WANG ; Chen WANG ; Lu SHI ; Yu-hui DUAN ; Yong-cheng AN ; Ying-lan LYU ; Hui-min LI ; Long CHENG ; Chang-hao HE ; Hui-lin ZHANG ; Yan HUANG ; Wan-xin FU ; Zhen-qing LIU ; Bao-sheng ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(7):105-112
ObjectiveTo investigate the effect and mechanism of Mori Folium extract on the glucose and lipid metabolism disorders in the liver of rats with type 2 diabetes mellitus (T2DM) through the phosphatidylinositol 3-kinase/protein kinase B/peroxisome proliferation-activated receptor α/carnitine palmitoyl transferase-1 (PI3K/Akt/PPARα/CPT-1) signaling pathway. MethodThe T2DM model was induced by the high-fat diet combined with the intraperitoneal injection of streptozotocin (STZ). The model rats were randomly divided into a model group, a metformin (0.2 g·kg-1) group, and a Mori Folium water extract (4.0 g·kg-1) group according to blood glucose and body weight. In the 8-week administration, fasting blood glucose was measured at the same time every week. The histomorphological and fat changes in the rat liver were observed by hematoxylin-eosin (HE) staining and oil red O staining. The levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the serum were measured by biochemical methods. Western blot (WB) was used to quantitatively detect the protein expression of p-PI3K,PI3K,p-Akt,Akt,PPARα,and CPT-1 in the rat liver. ResultAfter 8-week administration, the blood glucose of rats was higher in the model group than that in the control group (P<0.01), and lower in the Mori Folium water extract group than that in the model group (P<0.01). The results of HE staining showed that the liver tissue structure of the control group was complete, and the hepatocytes were arranged radially around the central vein, while the hepatocyte injury in the model group was obvious. Compared with the model group, the Mori Folium water extract group showed improved vacuolar degeneration and no lesions such as small bile duct hyperplasia. Oil red O staining showed that there was no obvious steatosis and necrosis in the hepatocytes of rats in the control group, and no lipid droplets in the hepatocytes were observed, while the model group showed increased lipid droplets. Mori Folium significantly reduced the lipid droplets in the liver. Biochemical analysis showed that the levels of TC, TG, LDL-C, AST, and ALT in the model group were significantly higher than those in control group (P<0.01). The levels of TC, TG, LDL-C, AST, and ALT in the Mori Folium water extract group were significantly lower than those in the model group (P<0.05,P<0.01). WB showed that the protein expression of p-PI3K/PI3K, p-Akt/Akt, PPARα, and CPT-1 in the model group were lower than those in the control group (P<0.01). Mori Folium water extract could increase the protein expression of p-PI3K/PI3K, p-Akt/Akt, PPARα, and CPT-1 (P<0.05 or P<0.01). ConclusionThe hypoglycemic mechanism of Mori Folium water extract may be related to the regulation of the PI3K/Akt/PPARα/CPT-1 signaling pathway.
10.Microneedle-based percutaneous immunity: a review.
Yue LI ; Jing WANG ; Zhiying JIN ; Wei WAN ; Xuexin BAI ; Chenyi HU ; Yanwei LI ; Wenwen XIN ; Lin KANG ; Hao YANG ; Jinglin WANG ; Shan GAO
Chinese Journal of Biotechnology 2022;38(9):3301-3315
Microneedle percutaneous immunization is achieved by puncturing the stratum corneum of the skin with microneedles so that the vaccine is efficiently recognized by antigen-presenting cells to induce a specific immune response. Due to the advantages of efficient induction of immune response, low pain and easy storage, transdermal immunization by microneedles has been widely used for immunization of various vaccines in recent years. This review summarizes the materials of microneedles, application for transcutaneous immunization, as well as the challenges that need to be addressed.
Administration, Cutaneous
;
Drug Delivery Systems
;
Needles
;
Vaccination
;
Vaccines

Result Analysis
Print
Save
E-mail