1.Neuroprotective effects of Shaoyao Gancao decoction against excitatory damage in PC12 cells based on the Src-NR2-nNOS pathway
Xiaxu Fan ; Hongyan Ma ; Tiantian Zhou ; Min Fu ; Zhiyuan Qiao ; Yingtong Feng ; Zhen Wang ; Yiwei Shen ; Jingxia Wang
Journal of Traditional Chinese Medical Sciences 2024;11(3):293-302
Objective:
To explore the neuroprotective effects of the Shaoyao Gancao decoction (SGD) against excitatory damage in PC12 cells and the role of the Src-NR2-nNOS pathway mediation by SGD in regulating γ-aminobutyric acid (GABA)-glutamate (Glu) homeostasis.
Methods:
N-Methyl-d-aspartic acid (NMDA) was used to establish a PC12 cell excitability injury model. To investigate the neuroprotective effect of SGD, a cell counting kit-8 (CCK-8) assay was used to determine PC12 cell viability, Annexin V/Propidium Iodide (Annexin V/PI) double staining was used to determine PC12 cell apoptosis, and Ca2+ concentration was observed using laser confocal microscopy. GABA receptor agonists and antagonists were used to analyze the neuroprotective interactions between γ-aminobutyric acid (GABA) and NMDA receptors. Additionally, molecular biology techniques were used to determine mRNA and protein expression in the Src-NR2-nNOS pathway. We analyzed the correlations between the regulatory sites of GABA and NMDA interactions, excitatory neurotoxicity, and brain damage at the molecular level.
Results:
NMDA excitotoxic injury manifested as a significant decrease in cell activity, increased apoptosis and caspase-3 protein expression, and a significant increase in intracellular Ca2+ concentration. Administration of SGD, a GABAA receptor agonist (muscimol), or a GABAB receptor agonist (baclofen) decreased intracellular Ca2+ concentrations, attenuated apoptosis, and reversed NMDA-induced upregulation of caspase-3, Src, NMDAR2A, NMDAR2B, and nNOS. Unexpectedly, a GABAA receptor antagonist (bicuculline) and a GABAB receptor antagonist (saclofen) failed to significantly increase excitatory neurotoxicity.
Conclusions
Taken together, these results not only provide an experimental basis for SGD administration in the clinical treatment of central nervous system injury diseases, but also suggest that the Src-NR2A-nNOS pathway may be a valuable target in excitotoxicity treatment.