1.Role of Nrf2/HO-1 Signaling Pathway in Osteoporosis and Chinese Medicine Intervention: A Review
Jirong ZHAO ; Peng JIANG ; Wen CHEN ; Xiaping XIAO ; Xingsheng WANG ; Qianwen CHEN ; Junfei MA ; Zhenghan YANG
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(20):241-249
Osteoporosis is a chronic skeletal disease characterized by low bone mass, destruction of bone tissue microarchitecture, and imbalance of bone homeostasis, leading to increased bone fragility and increased risk of fractures. Oxidative stress caused by the disruption of the balance between excess reactive oxygen species (ROS) and the anti-oxidative system is an important factor in the occurrence and progression of osteoporosis. Nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) is an important anti-oxidative stress pathway. Nrf2 is a primary factor in regulating cellular oxidative stress. Activating Nrf2 can stimulate the expression of HO-1. HO-1 is a key enzyme whose metabolites are bile green Oxygen, carbon monoxide, and free iron. The metabolites can scavenge ROS, thereby exerting an antioxidant effect in cells. At present, domestic and foreign scholars have reported that the Nrf2/HO-1 signaling pathway is closely related to the occurrence and development of osteoporosis and the mechanism of drugs. Chinese medicine can effectively solve the insufficiency of western medicine with multi-target, multi-channel, and multi-level advantages. Chinese medicine can resist oxidative stress, inflammatory response, and apoptosis by regulating the Nrf2/HO-1 signaling pathway, thus treating osteoporosis. This article reviewed the relationship between Nrf2/HO-1 signaling pathway and its key target protein factors and osteoporosis, to clarify the important role of the Nrf2/HO-1 signaling pathway in osteoporosis. At the same time, a systematic summary of Chinese medicines targeting and regulating the Nrf2/HO-1 signaling pathway for the treatment of osteoporosis was conducted, to provide a theoretical basis for further precise treatment of osteoporosis.