1.Palpitations, Shortness of Breath, Weakness in Limbs, Edema, and Dyspnea: A Rare Inflammatory Myopathy with Positive Aniti-mitochondrial Antibodies and Cardiac Involvement
Chunsu LIANG ; Xuchang ZHANG ; Ning ZHANG ; Lin KANG ; Xiaohong LIU ; Jiaqi YU ; Yingxian LIU ; Lin QIAO ; Yanli YANG ; Xiaoyi ZHAO ; Ruijie ZHAO ; Na NIU ; Xuelian YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(1):248-255
This article presents a case study of a patient who visited the Geriatric Department of Peking Union Medical College Hospital due to "palpitations, shortness of breath for more than 2 years, limb weakness for 6 months, edema, and nocturnal dyspnea for 2 months". The patient exhibited decreased muscle strength in the limbs and involvement of swallowing and respiratory muscles, alongside complications of heart failure and various arrhythmias which were predominantly atrial. Laboratory tests revealed the presence of multiple autoantibodies and notably anti-mitochondrial antibodies. Following a comprehensive multidisciplinary evaluation, the patient was diagnosed with anti-mitochondrial antibody-associated inflammatory myopathy. Treatment involved a combination of glucocorticoids and immunosuppressants, along with resistance exercises for muscle strength and rehabilitation training for lung function, resulting in significant improvement of clinical symptoms. The case underscores the importance of collaborative multidisciplinary approaches in diagnosing and treating rare diseases in elderly patients, where careful consideration of clinical manifestations and subtle abnormal clinical data can lead to effective interventions.
2.Evaluation of the accuracy of three-dimensional data acquisition from liquid- interference surfaces assisted by a scanner head with a compressed airflow system.
Xinkai XU ; Jianjiang ZHAO ; Sukun TIAN ; Zhongning LIU ; Xiaoyi ZHAO ; Xiaobo ZHAO ; Tengfei JIANG ; Xiaojun CHEN ; Chao MA ; Yuchun SUN
Journal of Peking University(Health Sciences) 2025;57(1):121-127
OBJECTIVE:
To quantitatively evaluate the accuracy of data obtained from liquid-interference surfaces using an intraoral 3D scanner (IOS) integrated with a compressed airflow system, so as to provide clinical proof of accuracy for the application of the compressed airflow system-based scanning head in improving data quality on liquid-interference surfaces.
METHODS:
The study selected a standard model as the scanning object, adhering to the "YY/T 1818-2022 Dental Science Intraoral Digital Impression Scanner" guidelines, a standard that defined parameters for intraoral scanning. To establish a baseline for accuracy, the ATOS Q 12M scanner, known for its high precision, was used to generate true reference values. These true values served as the benchmark for evaluating the IOS performance. Building on the design of an existing scanner, a new scanning head was developed to integrate with a compressed airflow system. This new design aimed to help the IOS capture high-precision data on surfaces where liquid-interference, such as saliva, might otherwise degrade scanning accuracy. The traditional scanning method, without airflow assistance, was employed as a control group for comparison. The study included five groups in total, one control group and four experimental groups, to investigate the effects of scanning lens obstruction, airflow presence, liquid media, and the use of the new scanning head on scanning process and accuracy. Each group underwent 15 scans, generating ample data for a robust statistical comparison. By evaluating trueness and precision in each group, the study assessed the impact of the compressed airflow system on the accuracy of IOS data collected from liquid-interference surfaces. Additionally, we selected Elite and Primescan scanners as references for numerical accuracy values.
RESULTS:
The scanning accuracy on liquid-interference surfaces was significantly reduced in terms of both trueness and precision [Trueness: 18.5 (6.5) vs. 38.0 (6.7), P < 0.05; Precision: 19.1 (8.5) vs. 31.7 (15.0), P < 0.05]. The use of the new scanning head assisted by the compressed airflow system significantly improved the scanning accuracy [Trueness: 22.3(7.6) vs. 38.0 (6.7), P < 0.05; Precision: 25.8 (9.6) vs. 31.7 (15.0), P < 0.05].
CONCLUSION
The scanning head based on the compressed airflow system can assist in improving the accuracy of data obtained from liquid-interference surfaces by the IOS.
Imaging, Three-Dimensional/methods*
;
Humans
;
Dental Impression Technique/instrumentation*
3.Mechanisms of ribosomopathy and phase separation-related ribosomopathy.
Zhiyuan PAN ; Guofen LIN ; Hao LIU ; Guozhi LI ; Xiaoyi ZHANG ; Jiewen DAI
Journal of Zhejiang University. Science. B 2025;26(6):503-526
Ribosome is an intracellular ribonucleoprotein particle that serves as the site of protein biosynthesis. Ribosomal dysfunction caused by mutations in genes encoding ribosomal proteins (RPs) and ribosome biogenesis factors (RBFs) can lead to a spectrum of diseases, collectively known as ribosomopathy. Phase separation is a thermodynamic process that produces multiple phases from a homogeneous mixture. The formation of membraneless organelles and intracellular structures, including ribosomes and nucleoli, cannot occur without the involvement of phase separation. Here, ribosome structure, biogenesis, and their relationship with ribosomopathy are systematically reviewed. The tissue specificity of ribosomopathy and the role of phase separation in ribosomopathy are particularly discussed, which may offer some clues for understanding the mechanisms of ribosomopathy. Then, some new ideas for the prevention, diagnosis, and treatment of ribosomopathy are provided.
Humans
;
Ribosomes/physiology*
;
Ribosomal Proteins/metabolism*
;
Mutation
;
Animals
;
Cell Nucleolus/metabolism*
;
Protein Biosynthesis
;
Phase Separation
4.AI-integrated IQPD framework of quality prediction and diagnostics in small-sample multi-unit pharmaceutical manufacturing: Advancing from experience-driven to data-driven manufacturing.
Kaiyi WANG ; Xinhai CHEN ; Nan LI ; Huimin FENG ; Xiaoyi LIU ; Yifei WANG ; Yanfei WU ; Yufeng GUO ; Shuoshuo XU ; Lu YAO ; Zhaohua ZHANG ; Jun JIA ; Zhishu TANG ; Zhisheng WU
Acta Pharmaceutica Sinica B 2025;15(8):4193-4209
The pharmaceutical industry faces challenges in quality digitization for complex multi-stage processes, especially in small-sample systems. Here, an intelligent quality prediction and diagnostic (IQPD) framework was developed and applied to Tong Ren Tang's Niuhuang Qingxin Pills, utilizing four years of data collected from four production units, covering the entire process from raw materials to finished products. In this framework, a novel path-enhanced double ensemble quality prediction model (PeDGAT) is proposed, which combines a graph attention network and path information to encode inter-unit long-range and sequential dependencies. Additionally, the double ensemble strategy enhances model stability in small samples. Compared to global traditional models, PeDGAT achieves state-of-the-art results, with an average improvement of 13.18% and 87.67% in prediction accuracy and stability on three indicators. Additionally, a more in-depth diagnostic model leveraging grey correlation analysis and expert knowledge reduces reliance on large samples, offering a panoramic view of attribute relationships across units and improving process transparency. Finally, the IQPD framework integrates into a Human-Cyber-Physical system, enabling faster decision-making and real-time quality adjustments for Tong Ren Tang's Niuhuang Qingxin Pills, a product with annual sales exceeding 100 million CNY. This facilitates the transition from experience-driven to data-driven manufacturing.
5.Quercetin ameliorates myocardial injury in diabetic rats by regulating L-type calcium channels.
Hongyan SUN ; Guoqing LU ; Chengwen FU ; Mengwen XU ; Xiaoyi ZHU ; Guoquan XING ; Leqiang LIU ; Yufei KE ; Lemei CUI ; Ruiyang CHEN ; Lei WANG ; Pinfang KANG ; Bi TANG
Journal of Southern Medical University 2025;45(3):531-541
OBJECTIVES:
To investigate the effects of quercetin on cuproptosis and L-type calcium currents in the myocardium of diabetic rats.
METHODS:
Forty SD rats were randomized into control group and diabetic model groups. The rat models of diabetes mellitus (DM) induced by high-fat and high-sugar diet combined with streptozotocin (STZ) injection were further divided into DM model group, quercetin treatment group, and empagliflozin treatment group (n=10). Blood glucose and body weight were measured every other week, and cardiac function of the rats was evaluated using echocardiography. HE staining, Sirius red staining, and wheat germ agglutinin (WGA) analysis were used to observe the changes in myocardial histomorphology, and serum copper levels and myocardial FDX1 expression were detected. In cultured rat cardiomyocyte H9c2 cells with high-glucose exposure, the effects of quercetin and elesclomol, alone or in combination, on intracellular CK-MB and LDH levels and FDX1 expression were assessed, and the changes in L-type calcium currents were analyzed using patch-clamp technique.
RESULTS:
The diabetic rats exhibited elevated blood glucose, reduced body weight, impaired left ventricular function, increased serum copper levels and myocardial FDX1 expression, decreased L-type calcium currents, and prolonged action potential duration. Quercetin and empagliflozin treatment significantly lowered blood glucose, improved body weight, and restored cardiac function of the diabetic rats, and compared with empagliflozin, quercetin more effectively reduced serum copper levels, downregulated FDX1 expression, and enhanced myocardial L-type calcium currents in diabetic rats. In H9c2 cells, high glucose exposure significantly increased myocardial expressions of FDX1, CK-MB and LDH, which were effectively lowered by quercetin treatment; Elesclomol further elevated FDX1, CK-MB and LDH levels in the exposed cells, and these changes were not significantly affected by the application of quercetin.
CONCLUSIONS
Quercetin ameliorates myocardial injury in diabetic rats possibly by suppressing myocardial cuproptosis signaling and restoring L-type calcium channel activity.
Animals
;
Quercetin/pharmacology*
;
Calcium Channels, L-Type/metabolism*
;
Diabetes Mellitus, Experimental/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Myocytes, Cardiac/drug effects*
;
Myocardium/pathology*
;
Male
6.Activation of Centromedial Amygdala GABAergic Neurons Produces Hypotension in Mice.
Xiaoyi WANG ; Ziteng YUE ; Luo SHI ; Wei HE ; Liuqi SHAO ; Yuhang LIU ; Jinye ZHANG ; Shangyu BI ; Tianjiao DENG ; Fang YUAN ; Sheng WANG
Neuroscience Bulletin 2025;41(5):759-774
The central amygdala (CeA) is a crucial modulator of emotional, behavioral, and autonomic functions, including cardiovascular responses. Despite its importance, the specific circuit by which the CeA modulates blood pressure remains insufficiently explored. Our investigations demonstrate that photostimulation of GABAergic neurons in the centromedial amygdala (CeMGABA), as opposed to those in the centrolateral amygdala (CeL), produces a depressor response in both anesthetized and freely-moving mice. In addition, activation of CeMGABA axonal terminals projecting to the nucleus tractus solitarius (NTS) significantly reduces blood pressure. These CeMGABA neurons form synaptic connections with NTS neurons, allowing for the modulation of cardiovascular responses by influencing the caudal or rostral ventrolateral medulla. Furthermore, CeMGABA neurons targeting the NTS receive dense inputs from the CeL. Consequently, stimulation of CeMGABA neurons elicits hypotension through the CeM-NTS circuit, offering deeper insights into the cardiovascular responses associated with emotions and behaviors.
Animals
;
GABAergic Neurons/physiology*
;
Male
;
Central Amygdaloid Nucleus/physiopathology*
;
Hypotension/physiopathology*
;
Mice
;
Blood Pressure/physiology*
;
Mice, Inbred C57BL
;
Solitary Nucleus/physiology*
;
Photic Stimulation
;
Neural Pathways/physiology*
7.A novel loop-structure-based bispecific CAR that targets CD19 and CD22 with enhanced therapeutic efficacy against B-cell malignancies.
Lijun ZHAO ; Shuhong LI ; Xiaoyi WEI ; Xuexiu QI ; Qiaoru GUO ; Licai SHI ; Ji-Shuai ZHANG ; Jun LI ; Ze-Lin LIU ; Zhi GUO ; Hongyu ZHANG ; Jia FENG ; Yuanyuan SHI ; Suping ZHANG ; Yu J CAO
Protein & Cell 2025;16(3):227-231
8.Identification of a nanobody able to catalyze the destruction of the spike-trimer of SARS-CoV-2.
Kai WANG ; Duanfang CAO ; Lanlan LIU ; Xiaoyi FAN ; Yihuan LIN ; Wenting HE ; Yunze ZHAI ; Pingyong XU ; Xiyun YAN ; Haikun WANG ; Xinzheng ZHANG ; Pengyuan YANG
Frontiers of Medicine 2025;19(3):493-506
Neutralizing antibodies have been designed to specifically target and bind to the receptor binding domain (RBD) of spike (S) protein to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus from attaching to angiotensin converting enzyme 2 (ACE2). This study reports a distinctive nanobody, designated as VHH21, that directly catalyzes the S-trimer into an irreversible transition state through postfusion conformational changes. Derived from camels immunized with multiple antigens, a set of nanobodies with high affinity for the S1 protein displays abilities to neutralize pseudovirion infections with a broad resistance to variants of concern of SARS-CoV-2, including SARS-CoV and BatRaTG13. Importantly, a super-resolution screening and analysis platform based on visual fluorescence probes was designed and applied to monitor single proteins and protein subunits. A spontaneously occurring dimeric form of VHH21 was obtained to rapidly destroy the S-trimer. Structural analysis via cryogenic electron microscopy revealed that VHH21 targets specific conserved epitopes on the S protein, distinct from the ACE2 binding site on the RBD, which destabilizes the fusion process. This research highlights the potential of VHH21 as an abzyme-like nanobody (nanoabzyme) possessing broad-spectrum binding capabilities and highly effective anti-viral properties and offers a promising strategy for combating coronavirus outbreaks.
Single-Domain Antibodies/immunology*
;
Spike Glycoprotein, Coronavirus/metabolism*
;
SARS-CoV-2/immunology*
;
Animals
;
Humans
;
Antibodies, Neutralizing/immunology*
;
Camelus
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Angiotensin-Converting Enzyme 2
9.Qualitative study on negative experiences among male master of nursing students during their studies
Zezhou WANG ; Xiaoyi WANG ; Yan LIU ; Qianqian HAO ; Zhihan XUE ; Kui FANG ; Xue DONG
Chinese Journal of Modern Nursing 2024;30(8):1035-1040
Objective:To understand the negative experiences of male master of nursing students during their studies.Methods:In this qualitative study, totally 11 male master of nursing students from China Medical University and Wuhan University were selected by purposive sampling in March 2023 for semi-structured interviews, and the data were analyzed using the KJ method.Results:Four themes were extracted: research pressure, pressure of time and finances, confusion about the future and development, and lack of identification with the nursing profession.Conclusions:Male master of nursing students experience negative emotions during their studies. Nursing educators and administrators should pay attention to the emotional management of male master of nursing students and gradually improve the training methods for nursing graduate students.
10.Quantitative susceptibility mapping assessment of iron deposition in gray matter nuclei and the correlation with cognitive function in cerebral small vessel disease
Mengmeng FENG ; Yuan WANG ; Xiaoyi LIU ; Senhao ZHANG ; Fan YU ; Jie LU
Chinese Journal of Cerebrovascular Diseases 2024;21(9):595-602
Objective To evaluate iron deposition in gray matter nuclei in patients with cerebral small vessel disease(CSVD)based on quantitative susceptibility mapping(QSM)and to analyze its correlation with cognitive function.Methods Patients with CSVD attending the outpatient clinic in the Department of Neurology at Xuanwu Hospital of Capital Medical University from December 2016 to November 2022,and healthy controls recruited from previous studies in the Department of Radiology and Nuclear Medicine at Xuanwu Hospital of Capital Medical University from September 2022 to November 2022 were retrospectively consecutively collected.Baseline data of CSVD patients and healthy controls was collected and compared,including age,sex,past history(hypertension,diabetes,hyperlipidemia),smoking history,alcohol consumption history and Montreal cognitive assessment(MoCA)scale score.MRI of all CSVD patients and healthy controls were collected,including three-dimensional T1 weighted imaging,QSM,T2 weighted imaging,and fluid attenuated inversion recovery(FLAIR)sequence imaging.According to the MRI-related imaging features and CSVD total burden score,the patients were divided into mild CSVD(CSVD-m)group and severe CSVD(CSVD-s)group,and healthy controls were the control group.QSM was used to obtain the susceptibility values of gray matter nuclei for all CSVD patients and controls.One-way covariance analysis and Bonferroni correction were used to compare the gray matter nuclei susceptibility values among the three groups.Spearman correlation analysis was performed between susceptibility values of gray matter nuclei with statistically significant differences in susceptibility values and cognitive function.Results A total of 61 cases of CSVD patients were included,including 29 cases in the CSVD-s group and 32 cases in the CSVD-m group;32 healthy controls were included in the control group.(1)There was no statistically significant difference in age,sex,hypertension,diabetes,hyperlipidemia,smoking,and alcohol consumption between the CSVD-s group,CSVD-m group and control group(all P>0.05).The MoCA scale scores of the CSVD-s group and CSVD-m group were lower than those of the control group(25.0[22.5,27.5]points,27.0[25.0,29.0]points than 28.0[27.0,29.0]points,H=15.006,P<0.01).The difference in the imaging features distribution of cerebral microbleeds,white matter hyperintensity,and perivascular space among the CSVD-s group and the CSVD-m group was statistically significant(all P<0.05).(2)The differences in susceptibility values of the left putamen(F=4.790),pallidus(F=12.896),hippocampus(F=3.904)and the right putamen(F=36.278),pallidus(F=39.449),caudate nucleus(F=6.797),and thalamus(F=6.525)were statistically significant among the three groups(all P<0.05).After Bonferroni correction,the susceptibility values of the left putamen and pallidus and the right putamen,pallidus,caudate nucleus,and thalamus in the CSVD-s group were higher than those of the control group(all P<0.05);the susceptibility values of the left pallidus and the right pallidus,putamen,and thalamus in the CSVD-m group were higher than those of the control group(all P<0.01),and the left hippocampus was lower than that of the control group(P=0.045).(3)The susceptibility values of the bilateral putamen were significantly negatively correlated with MoCA scale score(left putamen:rs=-0.316,P=0.015;right putamen:rs=-0.316,P=0.014).Conclusion Abnormal iron metabolism occurs in gray matter nuclei of CSVD patients,and iron deposition in the putamen correlate with cognitive dysfunction.

Result Analysis
Print
Save
E-mail