1.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
2.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
3.Mechanism of Tibetan Medicine Sanwei Doukoutang to Improve Cognitive Dysfunction in 5×FAD Mice Based on Wnt/β-catenin Signaling Pathway
Shuran LI ; Yaxin WANG ; Jing SUN ; Lei BAO ; Zihan GENG ; Dan XIE ; Ronghua ZHAO ; Yanyan BAO ; Qiyue SUN ; Jingsheng ZHANG ; Xinwei WANG ; Xinying LI ; Xihe CUI ; Xiaowei YANG ; LIUXIAN ; Mengyao CUI ; Qingshan LIU ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):54-60
ObjectiveTo explore the effects of the Tibetan medicine Sanwei Doukoutang (SWDK) on cognitive dysfunction in mice suffering from Alzheimer's disease (AD) and its related mechanism. MethodsFifty SPF 5 × FAD mice were randomly divided into model group, total ginsenoside group(0.04 g·kg-1), high-, medium-, and low-dose groups of SWDK (32.60, 16.30, 8.15 g·kg-1), with 10 mice in each group, and ten wild-type mice of the same age were used as the normal group, male and female in 1∶1. Gavage administration was performed once daily for 8 weeks. The Morris water maze test and contextual fear memory experiment were used to observe learning and memory function. Hematoxylin-eosin (HE) staining was utilized to observe the changes in the pathomorphology of brain tissue in mice. The levels of synaptophysin (SYP) and postsynaptic dense substance 95 (PSD95) in mice serum were detected by enzyme-linked immunosorbent assay (ELISA). The positive expression of brain-derived neurotrophic factor(BDNF) in the dentate gyrus (DG) region of mouse brain tissue was observed by immunohistochemistry (IHC). The protein levels of BDNF, Wnt family member 3A(Wnt3a), and β-catenin were detected in the hippocampus of mice by Western blot. ResultsCompared with the normal group of mice, the model group of mice had significantly more complex swimming routes and lower swimming speed (P<0.01), significantly lower percentage of time spent in the target quadrant (P<0.01), and a significantly lower percentage of freezing time (P<0.05). The number of neurons in the hippocampal region of mice was obviously reduced and unevenly arranged. The levels of SYP and PSD95(P<0.01) in the serum of mice were reduced, and the positive expression of BDNF in the DG region of the brain tissue of mice was reduced. The levels of hippocampal BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice were obviously reduced (P<0.05, P<0.01). Compared with the model group, the mice in the SWDK group and the total ginsenoside group had significantly shorter swimming routes, the high- and medium- dose SWDK groups significantly higher swimming speeds (P<0.01), significantly higher percentage of time spent in the target quadrant (P<0.01), obviously higher percentage of Freezing time (P<0.05), and obviously more neurons in the hippocampal region of the mice with tighter arrangement. The mice had elevated levels of serum SYP (P<0.05, P<0.01), PSD95 (P<0.01), increased BDNF-positive cells in the DG region of brain tissue, and obviously elevated levels of BDNF, Wnt3a, and β-catenin proteins in the hippocampus of mice (P<0.05, P<0.01). ConclusionSWDK can significantly improve the cognitive dysfunction of AD mice, and its mechanism may be related to regulating the Wnt/β-catenin signaling pathway, which promotes BDNF expression and thereby enhances synaptic plasticity, allowing neuronal signaling to be restored.
4.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
6.High expression of DTX2 promotes proliferation, invasion and epithelial-mesenchymal transition of oxaliplatin-resistant colorectal cancer cells.
Zhennan MA ; Fuquan LIU ; Xuefeng ZHAO ; Xiaowei ZHANG
Journal of Southern Medical University 2025;45(4):829-836
OBJECTIVES:
To investigate the role of DTX2 in regulating biological behaviors of oxaliplatin-resistant colorectal cancer cells (CRC/OXA cells).
METHODS:
CCK8 assay was used to determine the inhibition rate of oxaliplatin-treated CRC cells. A CRC/OXA cell line was constructed, in which DTX2 expression level was detected. The cells were transfected with a DTX2-shRNA plasmid or co-transfected with DTX2-shRNA and pcDNA-Notch2, and the changes in cell proliferation, migration and invasion ability were evaluated using plate cloning assay, scratch assay and Transwell invasion assay. The expression levels of Notch2, NICD and epithelial-mesenchymal transition (EMT) proteins of the transfected cells were detected with Western blotting. In a nude mouse model bearing SW620/OXA cell xenografts, the effects of DTX2 knockdown and Notch2 overexpression in the implanted cells on tumor growth and protein expressions were tested.
RESULTS:
The IC50 of oxaliplatin was 6.00 μmol/L in SW620 cells and 8.00 μmol/L in LoVo cells. CRC/OXA cells showed a significantly increased expression of DTX2. DTX2 knockdown in CRC/OXA cells significantly inhibited cell proliferation, migration and invasion, and these effects were reversed by co-transfection of the cells with pcDNA-Notch2. DTX2 knockdown significantly reduced the expression levels of Notch2, NICD and vimentin proteins and increased E-cadherin expression in CRC/OXA cells, and co-transfection with pcDNA-Notch2 potently attenuated the changes in these proteins. In the tumor-bearing mice, DTX2 overexpression obviously promoted the growth of SW620/OXA cell xenograft, enhanced the protein expressions of Notch2, NICD and vimentin, and lowered the expression of E-cadherin.
CONCLUSIONS
High expression of DTX2 promotes proliferation, migration, invasion and EMT of CRC/OXA cells through the Notch2 signaling pathway, suggesting the potential of DTX2 as a target to improve the efficacy of oxaliplatin.
Epithelial-Mesenchymal Transition
;
Humans
;
Cell Proliferation
;
Oxaliplatin
;
Colorectal Neoplasms/metabolism*
;
Animals
;
Drug Resistance, Neoplasm
;
Receptor, Notch2/metabolism*
;
Cell Line, Tumor
;
Mice, Nude
;
Cell Movement
;
Organoplatinum Compounds/pharmacology*
;
Neoplasm Invasiveness
;
Mice
7.Developing a polygenic risk score for pelvic organ prolapse: a combined risk assessment approach in Chinese women.
Xi CHENG ; Lei LI ; Xijuan LIN ; Na CHEN ; Xudong LIU ; Yaqian LI ; Zhaoai LI ; Jian GONG ; Qing LIU ; Yuling WANG ; Juntao WANG ; Zhijun XIA ; Yongxian LU ; Hangmei JIN ; Xiaowei ZHANG ; Luwen WANG ; Juan CHEN ; Guorong FAN ; Shan DENG ; Sen ZHAO ; Lan ZHU
Frontiers of Medicine 2025;19(4):665-674
Pelvic organ prolapse (POP), whose etiology is influenced by genetic and clinical risk factors, considerably impacts women's quality of life. However, the genetic underpinnings in non-European populations and comprehensive risk models integrating genetic and clinical factors remain underexplored. This study constructed the first polygenic risk score (PRS) for POP in the Chinese population by utilizing 20 disease-associated variants from the largest existing genome-wide association study. We analyzed a discovery cohort of 576 cases and 623 controls and a validation cohort of 264 cases and 200 controls. Results showed that the case group exhibited a significantly higher PRS than the control group. Moreover, the odds ratio of the top 10% risk group was 2.6 times higher than that of the bottom 10%. A high PRS was significantly correlated with POP occurrence in women older than 50 years old and in those with one or no childbirths. As far as we know, the integrated prediction model, which combined PRS and clinical risk factors, demonstrated better predictive accuracy than other existing PRS models. This combined risk assessment model serves as a robust tool for POP risk prediction and stratification, thereby offering insights into individualized preventive measures and treatment strategies in future clinical practice.
Humans
;
Female
;
Pelvic Organ Prolapse/epidemiology*
;
Middle Aged
;
Risk Assessment/methods*
;
China/epidemiology*
;
Multifactorial Inheritance
;
Aged
;
Risk Factors
;
Genome-Wide Association Study
;
Genetic Predisposition to Disease
;
Case-Control Studies
;
Adult
;
Polymorphism, Single Nucleotide
;
Genetic Risk Score
;
East Asian People
8.Clinical guidelines for indications, techniques, and complications of autogenous bone grafting.
Jianzheng ZHANG ; Shaoguang LI ; Hongying HE ; Li HAN ; Simeng ZHANG ; Lin YANG ; Wenxing HAN ; Xiaowei WANG ; Jie GAO ; Jianwen ZHAO ; Weidong SHI ; Zhuo WU ; Hao WANG ; Zhicheng ZHANG ; Licheng ZHANG ; Wei CHEN ; Qingtang ZHU ; Tiansheng SUN ; Peifu TANG ; Yingze ZHANG
Chinese Medical Journal 2024;137(1):5-7
9.Discovery of proqodine A derivatives with antitumor activity targeting NAD(P)H: quinone oxidoreductase 1 and nicotinamide phosphoribosyltransferase.
Jiangzhou SONG ; Guiqing ZOU ; Zhou ZHAO ; Ya ZHU ; Jiayu XUE ; Lanjia AO ; Huiyong SUN ; Haiping HAO ; Bo ZHANG ; Xiaowei XU
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):75-88
NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.
Humans
;
NAD/metabolism*
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Nicotinamide Phosphoribosyltransferase/metabolism*
;
Cytokines/metabolism*
;
Quinones
;
Oxidoreductases
10.Salvianolic Acid F Regulates Bax/Caspase-3/GSDME Signaling Pathway to Inhibit Pyroptosis of HK-2 Cells
Xiancong SHI ; Zhishen XIE ; Liang ZHAO ; Jiajun WANG ; Yafei DUAN ; Pan WANG ; Zhenqiang ZHANG ; Xiaowei ZHANG ; Jiangyan XU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(9):56-64
ObjectiveTo investigate the mechanism of salvianolic acid F (Sal F) in repairing the high glucose-induced injury in human kidney-2 (HK-2) cells via the B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax)/cysteinyl aspartate-specific proteinase 3 (Caspase-3)/gasdermin-E (GSDME) pathway. MethodThe cell counting kit-8 (CCK-8) was used to measure the relative viability of HK-2 cells exposed to high glucose and different concentrations (2.5, 5, 10, 20 μmol·L-1) of Sal F and the relative viability of HK-2 cells treated with Sal F for different time periods. The levels of lactate dehydrogenase (LDH) and interleukin-1β (IL-1β) in the supernatant of the cell culture were measured by the LDH assay kit and enzyme-linked immunosorbent assay (ELISA) kit, respectively. Flow cytometry combined with Annexin V-FITC/propidium iodide (PI) and Hoechst 33342/PI staining was employed to reveal the proportion of PI-positive HK-2 cells exposed to high glucose. Western blotting was employed to determine the protein levels of Bax, Bcl-2, cytochrome C, cysteinyl aspartate-specific proteinase (Caspase)-9, Caspase-3, and GSDME in the HK-2 cells exposed to high glucose and treated with Sal F. The 2,7-dichlorodihydrofluorescein diacetate fluorescence probe (DCFH-DA) and mitochondrial membrane potential assay kit (JC-1) were used to determine the production of reactive oxygen species (ROS) and the mitochondrial membrane potential in the HK-2 cells exposed to high glucose and treated with Sal F. ResultCompared with the blank group, the model group showed decreased cell viability (P<0.01), elevated levels LDH and IL-1β, increased proportion of PI-positive cells (P<0.01), up-regulated protein levels of Bax, cytochrome C, Caspase-9, Caspase-3, and GSDME (P<0.01), down-regulated protein level of Bcl-2 (P<0.01), decreased mitochondrial membrane potential, and excessive ROS accumulation. Compared with the model group, Sal F repaired the high glucose-induced injury in HK-2 cells (P<0.05), lowered the levels of LDH and IL-1β (P<0.05, P<0.01), and decreased the proportion of PI-positive cells (P<0.01). In addition, Sal F down-regulated the protein levels of Bax, cytochrome C, Caspase-9, Caspase-3, and GSDME and up-regulated the protein level of Bcl-2 (P<0.05, P<0.01), increased the mitochondrial membrane potential, and decreased the accumulation of ROS in HK-2 cells. ConclusionSal F can reduce the production of ROS, restore the balance of mitochondrial membrane potential, and inhibit pyroptosis via the Bax/Caspase-3/GSDME signaling pathway to repair the high glucose-induced injury in HK-2 cells.

Result Analysis
Print
Save
E-mail