1.Mechanism of Shenfu Xiongze Prescription in Regulating Autophagy Level to Intervene in Myocardial Remodeling in Rats via AMPK/mTOR Signaling Pathway
Xueqing WANG ; Wei ZHONG ; Liangliang PAN ; Caihong LI ; Man HAN ; Xiaowei YANG ; Yuanwang YU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):136-144
ObjectiveTo explore the mechanism by which the Shenfu Xiongze prescription regulates autophagy in rats with myocardial remodeling through the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. MethodsA rat model of myocardial remodeling induced by isoprenaline (ISO) was established. Rats were divided into the blank group,the model group,the low-,medium-, and high-dose groups of Shenfu Xiongze prescription,and the captopril group, 6 rats in each group. Except for the blank group,the rat model of myocardial remodeling was established in the other groups by intraperitoneal injection of 2.5 mg·kg-1 ISO for 3 consecutive weeks. At the same time of modeling, the low-,medium-, and high-dose groups of Shenfu Xiongze prescription were administered the corresponding doses of Shenfu Xiongze prescription solution (8.4,16.8,and 33.6 g·kg-1),and the captopril group was administered captopril solution (25 mg·kg-1). As for the blank group and the model group, the same volume of normal saline was given. The treatment was continued for 3 weeks. Echocardiography was used to observe the cardiac structure and function,and the heart weight index was detected. Masson staining and hematoxylin-eosin (HE) staining were used to observe the pathological morphology changes of myocardial tissue. The levels of interleukin-6 (IL-6) and B-type natriuretic peptide (BNP) in serum were detected by enzyme-linked immunosorbent assay (ELISA). The expression of type Ⅰ collagen (Collagen Ⅰ),type Ⅲ collagen (Collagen Ⅲ),and microtubule-associated protein 1 light chain 3 (LC3) proteins in myocardial tissue was determined by immunohistochemistry. Autophagy was observed by transmission electron microscopy. The mRNA expression of Collagen Ⅰ,Collagen Ⅲ,α-smooth muscle actin (α-SMA),LC3,yeast Atg6 homolog protein (Beclin-1),AMPK,and mTOR in myocardial tissue was detected by quantitative real-time polymerase chain reaction (real-time PCR). The protein expression of Collagen Ⅰ,α-SMA,transforming growth factor-β1 (TGF-β1),LC3,Beclin-1,p62, phosphorylation(p)-AMPK,p-mTOR,AMPK,and mTOR was detected by Western blot. ResultsCompared with the normal group,rats in the model group exhibited significantly decreased values of ejection fraction (EF) and left ventricular fractional shortening (FS) (P<0.01), significantly increased values of left ventricular end-diastolic diameter (LVIDd) and left ventricular end-systolic diameter (LVIDs) (P<0.01). Additionally, the model group also showed increased degrees of inflammatory infiltration and fibrosis of myocardial tissue, significantly elevated levels of serum IL-6 and BNP (P<0.01), significantly increased mRNA and protein levels of Collagen Ⅰ,Collagen Ⅲ,α-SMA,and mTOR (P<0.01),and markedly decreased mRNA and protein levels of LC3,Beclin-1,and AMPK (P<0.05,P<0.01). Compared with the model group, the low-,medium-, and high-dose groups of Shenfu Xiongze prescription presented significantly elevated EF and FS values (P<0.01) and lowered LVIDd and LVIDs (P<0.05). In these groups, the inflammation and fibrosis were alleviated significantly. They also exhibited decreased serum levels of IL-6 and BNP (P<0.01), significantly reduced protein expression of Collagen Ⅰ, α-SMA, TGF-β1, p62, and p-mTOR (P<0.01), significantly decreased mRNA expression of Collagen Ⅰ, Collagen Ⅲ, α-SMA, and mTOR (P<0.01), and significantly increased mRNA and protein levels of LC3, Beclin-1, and AMPK (P<0.05,P<0.01). ConclusionThe Shenfu Xiongze prescription can improve the myocardial remodeling induced by ISO in rats by regulating the autophagy level,enhance cardiac function,and reduce inflammatory and fibrotic levels. This effect may be achieved through the AMPK/mTOR signaling pathway.
2.An analysis of the seasonal epidemic characteristics of influenza in Kunming City of Yunnan Province from 2010 to 2024
Zexin HU ; Min DAI ; Wenlong LI ; Minghan WANG ; Xiaowei DENG ; Yue DING ; Hongjie YU ; Juan YANG ; Hong LIU
Shanghai Journal of Preventive Medicine 2025;37(8):643-648
ObjectiveTo characterize the seasonal patterns of influenza in Kunming City, Yunnan Province before, during, and after the COVID-19 pandemic, and provide scientific evidence for optimizing influenza prevention and control strategies. MethodsInfluenza-like illness (ILI) and etiological surveillance data for influenza from the 14th week of 2010 to the 13th week of 2024 in Kunming City of Yunnan Province were collected. Harmonic regression models were constructed to analyze the epidemic characteristics and seasonal patterns of influenza before (2010/2011‒2019/2020 influenza seasons), during (2020/2021‒2022/2023 influenza seasons), and after (2023/2024 influenza season) the COVID-19 pandemic. ResultsBefore the COVID-19 pandemic, influenza in Kunming City mainly exhibited an annual cyclic pattern without a significant semi-annual periodicity, peaking from December to February of the next year, with an epidemic duration of 20‒30 weeks. During the pandemic, influenza seasonality shifted, with an increase in semi-annual periodicity and an approximate one month delay in annual peaks. However, after the pandemic, the annual amplitude of influenza increased compared with that before the pandemic, and the epidemic duration extended by about one month. Although the annual peak largely reverted to the pre-pandemic levels, the annual peaks for different influenza subtypes/lineages had not fully recovered. ConclusionInfluenza seasonality in Kunming City underwent substantial alterations following the COVID-19 pandemic and has not yet fully reverted to pre-pandemic levels. Continuous surveillance on different subtypes/lineages of influenza viruses remains essential, and prevention and control strategies should be adjusted and optimized in a timely manner based on current epidemic trends.
3.Long-term safety and effectiveness of roxadustat in Chinese patients with chronic kidney disease-associated anemia: The ROXSTAR registry.
Xiaoying DU ; Yaomin WANG ; Haifeng YU ; Jurong YANG ; Weiming HE ; Zunsong WANG ; Dongwen ZHENG ; Xiaowei LI ; Shuijuan SHEN ; Dong SUN ; Weimin YU ; Detian LI ; Changyun QIAN ; Yiqing WU ; Shuting PAN ; Jianghua CHEN
Chinese Medical Journal 2025;138(12):1465-1476
BACKGROUND:
Chronic kidney disease (CKD)-associated anemia (CKD-anemia) is associated with poor survival, and hemoglobin targets are often not achieved with current therapies. Phase 3 trials have demonstrated the treatment efficacy of roxadustat for CKD-anemia. This phase 4 study aims to evaluate the long-term (52-week) safety and effectiveness of roxadustat in a broad real-world patient population with CKD-anemia with and without dialysis in China.
METHODS:
This Phase 4 multicenter, open-label, prospective study, conducted from 24 November 2020 to 11 November 2022, evaluated the long-term safety and effectiveness of roxadustat for CKD-anemia in China. Patients aged ≥18 years with CKD-anemia with or without dialysis were included. The initial oral dose was 70-120 mg (weight-based followed by dose adjustment) over 52 weeks. The primary endpoint was safety based on adverse events (AEs). The secondary endpoints were hemoglobin changes from baseline and the proportion of patients who achieved mean hemoglobin ≥100 g/L. Effectiveness evaluable populations 1 (EE1) and EE2 included roxadustat-naïve and previously roxadustat-treated patients, respectively. The safety analysis set (SAF) included all patients who received ≥1 occasion.
RESULTS:
The EE1, EE2, and SAF populations included 1804, 193, and 2021 patients, respectively. In the SAF, the mean age was 50 ± 14 years, and 1087 patients (53.8%) were male. Mean baseline hemoglobin was 96.9 ± 14.0 g/L in EE1 and 100.3 ± 12.9 g/L in EE2. In EE1, the mean (95% confidence interval) hemoglobin changes from baseline over weeks 24-36 and 36-52 were 14.2 (13.5-14.9) g/L and 14.3 (13.5-15.0) g/L, respectively. Over weeks 24-36 and 36-52, 83.3% and 86.1% of patients in EE1 and 82.7% and 84.7% in EE2 achieved mean hemoglobin ≥100 g/L, respectively. In the SAF, 1643 (81.3%) patients experienced treatment-emergent AEs (TEAEs). Overall, 219 (10.8%) patients experienced drug-related TEAEs. Thirty-eight (1.9%) patients died of TEAEs (unrelated to the study drug). Vascular access thrombosis was uncommon.
CONCLUSIONS:
Roxadustat (52 weeks) increased hemoglobin and maintained the treatment target in Chinese patients with CKD-anemia with acceptable safety, supporting its use in real-world settings.
REGISTRATION
Chinese Clinical Trial Registry ( www.chictr.org.cn ) ChiCTR2100046322; CDE ( www.chinadrugtrials.org.cn ) CTR20201568.
Humans
;
Male
;
Female
;
Anemia/etiology*
;
Middle Aged
;
Renal Insufficiency, Chronic/complications*
;
Glycine/adverse effects*
;
Isoquinolines/adverse effects*
;
Aged
;
Prospective Studies
;
Adult
;
Hemoglobins/metabolism*
;
Treatment Outcome
;
China
;
Registries
;
East Asian People
4.Dual-ferroptosis induction-based microneedle patches for enhanced chemodynamic/photothermal combination therapy against triple-negative breast cancer.
Yujie WANG ; Zhaoyou CHU ; Peisan WANG ; Tao LI ; Yu JIN ; Silong WU ; Xiaowei SONG ; Weinan ZHANG ; Miaomiao YANG ; Zhengbao ZHA ; Haisheng QIAN ; Yan MA
Acta Pharmaceutica Sinica B 2025;15(8):4210-4224
Triple-negative breast cancer (TNBC) remains a refractory subtype of breast cancer due to its resistance to various therapeutic strategies. In this study, we introduce a "brake-release and accelerator-pressing" approach to engineer a microneedle patch embedded with copper-doped Prussian blue nanoparticles (Cu-PB) and the ferroptosis inducer sorafenib (SRF) for raised chemodynamic (CDT)/photothermal (PTT) combination therapy against TNBC. Upon transdermal insertion, the dissolving microneedles swiftly disintegrate and facilitate the release of SRF. Under gentle external light exposure, copper ions (Cu2+) and iron ions (Fe3+) were liberated from Cu-PB. The direct chelation of Cu2+ and the indirect suppression by SRF, collectively attenuate glutathione peroxidase 4 (GPX4) enzymatic function, destabilizing the cellular redox equilibrium (referred to as the "brake-release" strategy). The release of Cu2+ and Fe3+ ions instigates a Fenton/Fenton-like reaction within tumor cells, further yielding hydroxyl radicals and elevating reactive oxygen species (ROS) concentrations (referred to as the "accelerator-pressing" strategy). This overwhelming ROS accumulation, coupled with the impaired clearance of resultant lipid peroxides (LPO), ultimately triggers a robust ferroptosis cell death response. In summary, this study presents an innovative combinatorial therapeutic strategy based on dual-ferroptosis induction for TNBC, implying a promising therapeutic platform for developing ferroptosis-centered treatments for this aggressive breast cancer subtype.
5.PARylation promotes acute kidney injury via RACK1 dimerization-mediated HIF-1α degradation.
Xiangyu LI ; Xiaoyu SHEN ; Xinfei MAO ; Yuqing WANG ; Yuhang DONG ; Shuai SUN ; Mengmeng ZHANG ; Jie WEI ; Jianan WANG ; Chao LI ; Minglu JI ; Xiaowei HU ; Xinyu CHEN ; Juan JIN ; Jiagen WEN ; Yujie LIU ; Mingfei WU ; Jutao YU ; Xiaoming MENG
Acta Pharmaceutica Sinica B 2025;15(9):4673-4691
Poly(ADP-ribosyl)ation (PARylation) is a specific form of post-translational modification (PTM) predominantly triggered by the activation of poly-ADP-ribose polymerase 1 (PARP1). However, the role and mechanism of PARylation in the advancement of acute kidney injury (AKI) remain undetermined. Here, we demonstrated the significant upregulation of PARP1 and its associated PARylation in murine models of AKI, consistent with renal biopsy findings in patients with AKI. This elevation in PARP1 expression might be attributed to trimethylation of histone H3 lysine 4 (H3K4me3). Furthermore, a reduction in PARylation levels mitigated renal dysfunction in the AKI mouse models. Mechanistically, liquid chromatography-mass spectrometry indicated that PARylation mainly occurred in receptor for activated C kinase 1 (RACK1), thereby facilitating its subsequent phosphorylation. Moreover, the phosphorylation of RACK1 enhanced its dimerization and accelerated the ubiquitination-mediated hypoxia inducible factor-1α (HIF-1α) degradation, thereby exacerbating kidney injury. Additionally, we identified a PARP1 proteolysis-targeting chimera (PROTAC), A19, as a PARP1 degrader that demonstrated superior protective effects against renal injury compared with PJ34, a previously identified PARP1 inhibitor. Collectively, both genetic and drug-based inhibition of PARylation mitigated kidney injury, indicating that the PARylated RACK1/HIF-1α axis could be a promising therapeutic target for AKI treatment.
6.Development of a prediction model for the incidence of type 2 diabetic kidney disease and its application based on a regional health data platform
Lijia LIU ; Xiaowei CHEN ; Yexian YU ; Meng ZHANG ; Pei LI ; Houyu ZHAO ; Yexiang SUN ; Hongyu SUN ; Yumei SUN ; Xueyang LIU ; Hongbo LIN ; Peng SHEN ; Siyan ZHAN ; Feng SUN
Chinese Journal of Epidemiology 2024;45(10):1426-1432
Objective:To construct a risk prediction model for diabetes kidney disease (DKD).Methods:Patients newly diagnosed with type 2 diabetes mellitus (T2DM) between January 1, 2015, and December 31, 2022, were selected as study subjects from the Yinzhou Regional Health Information Platform in Ningbo City. The Lasso method was used to screen the risk factors, and the DKD risk prediction model was established using Cox proportional hazard regression models. Bootstrap 500 resampling was applied for internal validation.Results:The study included 49 706 subjects, with an median ( Q1, Q3) age of 60.00 (50.00, 68.00) years old, and 55% were male. A total of 4 405 subjects eventually developed DKD. Age at first diagnosis of T2DM, BMI, education level, fasting plasma glucose, glycated hemoglobin A1c, urinary albumin, past medical history (hyperuricemia, rheumatic diseases), triglycerides, and estimated glomerular filtration rate were included in the final model. The final model's C-index was 0.653, with an average of 0.654 after Bootstrap correction. The final model's area under the receiver operating characteristic curve for predicting 4-year, 5-year, and 6-year was 0.657, 0.659, and 0.664, respectively. The calibration curve was closely aligned with the ideal curve. Conclusions:This study constructed a DKD risk prediction model for newly diagnosed T2DM patients based on real-world data that is simple, easy to use, and highly practical. It provides a reliable basis for screening high-risk groups for DKD.
7.Relationship between the expression of lncRNA SNHG25 and miR-497-5p in glioma tissues and clinical features and prognosis
Xiaowei DUAN ; Ning ZHANG ; Jing WANG ; Liwei GAO ; Xiujie LIU ; Xiwang WANG ; Guoyuan YU
International Journal of Laboratory Medicine 2024;45(12):1463-1468
Objective To investigate the expression of long non-coding RNA(lncRNA)small nucleolar RNA host gene(SNHG)25 and microRNA(miR)-497-5p in glioma tissues and their relationship with clinical features and prognosis.Methods A total of 157 glioma patients admitted to the hospital from January 2019 to January 2020 were selected as the glioma group,and 100 patients who underwent surgical treatment due to craniocerebral injury in the same hospital during the same period were selected as the control group.The ex-pression levels of lncRNA SNHG25 and miR-497-5p were detected in glioma tissues and normal brain tissues resected during operation.The patients were followed up for 3 years.The correlation between the expression levels of lncRNA SNHG25 and miR-497-5p was analyzed,and the relationship between the expression level of lncRNA SNHG25 and miR-497-5p and the clinical characteristics and prognosis of patients were analyzed.Re-sults Compared with the control group,the expression level of lncRNA SNHG25 in the glioma group was in-creased(P<0.05),and the expression level of miR-497-5p was decreased(P<0.05).Compared with the maximum diameter of tumors<4 cm,World Health Organization(WHO)central nervous system tumor grade Ⅰ-Ⅱ,the expression level of lncRNA SNHG25 was increased and the expression level of miR-497-5p was decreased in glioma tissues with the maximum diameter of tumors ≥4 cm and WHO central nervous sys-tem tumor grade Ⅲ-Ⅳ(P<0.05).The expression level of lncRNA SNHG25 in glioma patients was nega-tively correlated with miR-497-5p(r=-0.370,P<0.05).The cumulative survival rate of lncRNA SNHG25 high expression group was lower than that of lncRNA SNHG25 low expression group(P<0.05),and the cu-mulative survival rate of miR-497-5p low expression group was lower than that of miR-497-5p high expression group(P<0.05).Grade Ⅲ-Ⅳ of WHO central nervous system tumor grade and high expression of lncRNA SNHG25 were risk factors for poor prognosis of glioma patients(P<0.05),while high expression of miR-497-5p was a protective factor(P<0.05).Conclusion The expression of lncRNA SNHG25 is increased and the expression of miR-497-5p is decreased in glioma tissues,which is related to the maximum diameter of tumor and high WHO central nervous system tumor grade,and can lead to poor prognosis of glioma patients.
8.Establishment of primary breast cancer cell line as new model for drug screening and basic research
Xian HAO ; Jianjun HUANG ; Wenxiu YANG ; Jinting LIU ; Junhong ZHANG ; Yubei LUO ; Qing LI ; Dahong WANG ; Yuwei GAO ; Fuyun TAN ; Li BO ; Yu ZHENG ; Rong WANG ; Jianglong FENG ; Jing LI ; Chunhua ZHAO ; Xiaowei DOU
China Oncology 2024;34(6):561-570
Background and purpose:In 2016 the National Cancer Institute(NCI)decided stopping to use NCI-60 cell lines for drug screening,suggesting that tumor cell lines were losing their value as a tool for drug discovery and basic research.The reason for NCI-60 cells'retirement'was that the preclinical studies based on traditional cellular and animal models did not obtain the corresponding expected efficacy in clinical trials.Since the major cancer behaviors,such as proliferation and metastasis,are fundamentally altered with long-term culture,the tumor cell lines are not representative of the characteristics of cancer in patients.Currently,scientists hope to create a new cancer model that are derived from fresh patient samples and tagged with details about their clinical past.Our purpose was to create patient-derived breast cancer primary cell lines as new cancer model for drug screening and basic research.Methods:Breast cancer tissues were collected in the Department of Breast Surgery,Affiliated Hospital of Guizhou Medical University.The collection of tumor tissue samples was approved by the Ethics Committee of the Affiliated Hospital of Guizhou Medical University(approval number:2022 ethics No.313),and the collection and use of tumor tissues complied with the Declaration of Helsinki.The primary breast cancer cell lines were isolated from the patient's breast cancer tissues and cultured in BCMI medium.After the cells proliferated,the media were replaced with DEME medium.Cell line STR genotyping was done to determine cell-specific genetic markers and identification.Clone formation assay and transplantation assay were done to analyze the ability of breast cancer primary cell lines to form tumors.Results:We created 6 primary breast cancer cell lines.The 6 primary breast cancer cell lines from the patients were tagged with the definitively clinicopathological features,clinical diagnosis,therapeutic regimens,clinical effectiveness and prognostic outcomes.The STR genotyping assays identified the genetic markers and determined the identities of the 6 primary breast cancer cell lines.Clone formation assays and transplantation assay showed that the proliferative capacities of the patient-derived primary breast cancer cell lines were significantly greater compared with the conventional breast cancer cell lines.Conclusion:We created a panel of 6 patient-derived primary breast cancer cell lines as new cancer model for drug screening and basic research in breast cancer.
9.Host Targets Interacting with Influenza Virus NP and Mechanism of Gardenia Jasminoides Iridoid Glycoside Against Influenza Virus
Xiaowei YANG ; Lei BAO ; Yu ZHANG ; Xian LIU ; Zihan GENG ; Shuran LI ; Jingsheng ZHANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(13):60-66
ObjectiveTo explore host factors interacting with influenza virus nucleoprotein (NP) and study their effects on influenza virus replication, as well as the mechanism of gardenia jasminoides iridoid glycoside (IGE) in inhibiting influenza virus. MethodA yeast two-hybrid system was utilized to screen host factors that interacted with influenza virus NP. Heterogeneous nuclear ribonucleoprotein D0 (HNRNPD), glucosamine-6-phosphate deaminase 1 (GNPDA1), poly(rC)-binding protein 1 (PCBP1), and protein inhibitor of activated signal transducer and activator of transcription (STAT) protein 1 (PIAS1) were validated by immunoprecipitation assay. The effects of PIAS1 and HNRNPD on influenza virus replication were compared by a dual luciferase assay, and the effects of IGE on influenza virus replication were examined in the presence of transfected ribonucleoprotein (RNP) and knockdown of PIAS1. ICR mice were randomly divided into a normal group, model group, oseltamivir phosphate group, and high, medium, and low dose IGE groups, with 10 mice in each group. In addition to the normal group, each group was infected with the influenza A virus FM1 strain by nasal drip to establish a viral pneumonia model. The high, medium, and low dose IGE groups were given drugs of 50, 25, and 12.5 mg∙kg-1 by gavage, and the oseltamivir phosphate group was given the drug of 27.5 mg∙kg-1 by gavage. Equal amounts of distilled water were instilled in the normal and model groups for four consecutive days. Later, protein expression of PIAS1, NP, phosphorylated (p)-STAT3, STAT3, p-STAT1, and STAT1 were detected in the lung tissue by Western blot. ResultIn yeast two-hybrid assays, 16 potential host targets interacting with influenza virus NP were identified. Immunoprecipitation experiments revealed that HNRNPD and PIAS1 could interact with influenza virus NP. The dual luciferase reporter assays found that both PIAS1 knockdown and overexpression significantly affected IAV RNP activity (P<0.05, P<0.01), and the effect of HNRNPD on IAV RNP was not significant. Both high and low dose IGE groups reduced influenza virus replication (P<0.05) and reversed the increase in influenza virus replication caused by the knockdown of PIAS1(P<0.05, P<0.01). The expressions of PIAS1, NP, p-STAT3, p-STAT1, and STAT1 in the lung tissue of infected mice were reduced to different degrees in each IGE group (P<0.05, P<0.01). ConclusionPIAS1 interacts with influenza virus NP and is able to inhibit influenza virus replication. IGE may exert antiviral effects by inhibiting the activity of IAV RNP through the PIAS1/STAT1 pathway.
10.Development and evaluation of a rapid and sensitive POC chemiluminescent assay for β-human chorionic gonadotropin
Haiyu XIE ; Jing QIN ; Yanni ZHANG ; Junjie LIU ; Xiaowei HE ; Yu WANG
Chinese Journal of Immunology 2024;40(3):615-620
Objective:To develop and evaluate a rapid and sensitive point-of-care chemiluminescent assay(POC-CLIA)for β-human chorionic gonadotropin(β-HCG).Methods:POC-CLIA was constructed based on alkaline phosphatase(Alp)-AMPPD lumi-nescence system and magnetic particles(Mps)carrier.Performance of POC-CLIA,including sensitivity,precision,accuracy,linear dilution,specificity,stability,hook effect and clinical application were evaluated.Results:Detection limit of β-HCG was 0.71 mU/ml,linear detection range was 0.710~1.092×104 mU/ml,and was no hook effect up to 1.7×105 mU/ml.Intra and inter batch coefficients of variation were less than 10%,and could be stored stably at 37℃ for 10 days.Accuracy deviation was within±10%,so results were reliable.There was no cross-reactivity between interfering substances and anti-β-HCG antibdies.For detecting β-HCG in 100 clinical serum samples,results were highly correlated with those that were tested by clinical standard methods(R2=0.997 0).Turnaround time for single sample was less than 15 min and throughput could reach 200 T/h.Conclusion:This method is adequate that can be widely used in grassroots communities to help large-scale screening of pregnancy and related diseases.

Result Analysis
Print
Save
E-mail