1.Efficiency characteristics and changes in tertiary general hospitals
Xiaowan WANG ; Lihang LIU ; Shaohua KUANG ; Shuangmei LIU ; Yannan MAO ; Mao YOU
Chinese Journal of Health Policy 2015;(10):33-40
Objective: To analyze the efficiency characteristics and trend of tertiary general public hospitals from both static and dynamic perspectives. Methods: After collecting data of personnel, equipment, assets, health services and other inputs-output indicators from 50 tertiary public hospitals from 2006 to 2012 , this paper uses C2 R-DEA and BC2-DEA models, as well as Malmquist Index model to build suitable analysis model. Results:About 10%~12% of the sample hospitals are in a relatively effective operational state, and the mean values of allocation effi-ciency and scale efficiency are 0. 956 and 0. 943, respectively, which are close to the efficient frontier. The mean values of pure technical efficiency, technical efficiency, cost efficiency and overall efficiency are 0. 796, 0. 784, 0. 714 and 0. 714, respectively, which are relatively poor compared with the efficiency frontier. Moreover, the number of hospitals that are in the state of diminishing returns to scale increased from 7 . 69% to 26 . 31%, while the number of hospitals that are in the state of increasing returns to scale decreased from 80. 77% to 58. 34%. The changes in techno-logical progress, Malmquist productivity index, technical efficiency index, pure technical efficiency index and scale effi-ciency index remained a relatively stable consistency, and showed continuous improvement and steady development trend. Conclusion:Tertiary general public hospitals are facing the transformation of driving force for development and incentive mechanisms. This needs not only to change the management concept and development mode of the hospitals, but also to build evaluation standards of optimum efficiency that are relevant to the structure, process and outcome, in order to pro-mote the transformation of hospital governance and development model that includes the functions of government.
2.Effect of microRNA-181b-5p on the proliferation and invasion of cutaneous melanoma cells and its mechanisms
Li XIA ; Linhong YANG ; Li XU ; Wenguo SUN ; Liang YU ; Wanfang ZHAI ; Dongxia WANG ; Xiaowan KUANG
Chinese Journal of Dermatology 2022;55(7):588-595
Objective:To explore whether microRNA (miRNA) -181b-5p inhibits the proliferation and invasion of cutaneous melanoma cells by targeting pleckstrin (PLEK) .Methods:Bioinformatics methods were used to analyze cutaneous melanoma-associated core genes; dual-luciferase reporter assay was performed to verify the targeted interaction between miRNA-181b-5p and PLEK. Oligo RNA and small interfering RNA (siRNA) were used to regulate the expression of miRNA-181b-5p and PLEK in A375 cells respectively in this experiment, and A375 cells were divided into the following groups in detail: mimic negative control group, miRNA-181b-5p mimic group, inhibitor negative control group, miRNA-181b-5p inhibitor group, PLEK siRNA group, siRNA negative control group, miRNA-181b-5p inhibitor + control siRNA co-transfection group and miRNA-181b-5p inhibitor + PLEK siRNA3 co-transfection group. After 48-hour treatment, qPCR was performed to determine the mRNA expression of miRNA-181b-5p and PLEK in A375 cells, Western blot analysis to determine the PLEK protein expression, and Transwell assay to assess the invasive ability of A375 cells; after additional 24-96 hours of culture, cell counting kit-8 (CCK8) assay was conducted to assess the proliferative ability of A375 cells.Results:PLEK was the core gene for cutaneous melanoma. PLEK expression in the cutaneous melanoma in situ tissues was significantly higher than that in the paracancerous tissues ( P = 0.031) , but lower than that in the metastatic tissues ( P = 0.001) . Compared with human epidermal melanocytes HEMa-LP, the mRNA and protein expression of PLEK significantly increased in A375 cells (mRNA: 3.884 ± 0.156 vs. 0.997 ± 0.010, t = 18.48, P < 0.001; protein: 2.840 ± 0.301 vs. 1.029 ± 0.094, t = 5.47, P = 0.005) , but the miRNA-181b-5p expression significantly decreased in A375 cells (0.333 ± 0.042 vs. 0.967 ± 0.069, t = 7.83, P = 0.001) . Dual-luciferase reporter assay showed targeted binding of miRNA-181b-5p to PLEK. Compared with the mimic negative control group, the miRNA-181b-5p mimic group showed significantly decreased survival rate of A375 cells (48 hours: t = 7.96, P = 0.015; 72 hours: t = 7.50, P = 0.002; 96 hours: t = 7.96, P = 0.001) , and significantly decreased invasive ability of A375 cells ( t = 5.07, P = 0.007) ; on the contrary, the survival rate and invasive ability of A375 cells were significantly higher in the miRNA-181b-5p inhibitor group than in the inhibitor negative control group (survival rate: 24 hours, t =5.38, P = 0.013; 48 hours, t = 5.36, P = 0.013; 72 hours, t =7.63, P = 0.005; 96 hours, t = 5.99, P = 0.004; invasive ability: t = 7.24, P = 0.002) ; compared with the siRNA negative control group, the proliferative and invasive ability of A375 cells significantly decreased in the PLEK siRNA group (proliferative ability: 48, 72, 96 hours, P = 0.015, 0.011, 0.001, respectively; invasive ability: t = 4.93, P = 0.008) ; compared with the miRNA-181b-5p inhibitor + control siRNA co-transfection group, the miRNA-181b-5p inhibitor + PLEK siRNA co-transfection group showed significantly decreased proliferation rate and invasive ability of A375 cells (proliferation rate: 24, 48, 72, 96 hours, P = 0.042, 0.042, 0.037, 0.017, respectively; invasive ability: t = 8.52, P = 0.001) . Conclusion:miRNA-181b-5p can inhibit the proliferation and invasion of cutaneous melanoma A375 cells, likely by down-regulating the PLEK expression.