1.Role of dermoscopy in assessing vitiligo activity
Chao FU ; Jiaona WU ; Wenchao LANG ; Fei GAO ; Guiye NIU ; Peiwen BIAN ; Minhong GAO ; Xiaoqing SI ; Linlin XIN
Chinese Journal of Dermatology 2022;55(3):268-271
With in-depth research and development of dermoscopy, the dermoscopic features including perifollicular pigments, perilesional pigments, pigment network structure, satellite phenomenon and "tapioca sago" appearance, micro-Koebner phenomenon and comet tail-like phenomenon have provided a basis for the evaluation of vitiligo activity. This review summarizes progress in the evaluation of vitiligo activity with dermoscopy in recent years, aiming to promote the application of dermoscopy in the assessment of vitiligo activity.
2.Screen of differentially expressed genes in liver cancer xenograft tissues after CDC25Agene silence
CHEN Si ; TANG Yanping ; LI Kezhi ; YANG Chun ; HUANG Xiaoqing ; CHEN Xiujuan ; CAO Ji
Chinese Journal of Cancer Biotherapy 2020;27(2):123-128
Objective: To explore the genes that may be regulated by cell division cycle 25A (CDC25A) with gene chip technology, and to elucidate and verify that CDC25A has a regulatory effect on the expression of liver cancer related genes. Methods: CDC25A expression in human liver cancer HepG2 cells was silenced by siRNA interference technology and a nude mouse xenograft model of liver cancer was successfully constructed in our previous research. Affymetrix human gene expression profiling microarray was used to further screen differentially expressed genes (DEGs) after silencing CDC25A in liver cancer xenografts, and GO analysis and KEGG analysis were performed. Some of the DEGs were verified by qPCR. Results: The chip screened 188 DEGs in liver cancer xenograft tissues after CDC25A silence, including 78 up-regulated genes and 110 down-regulated genes. These DEGs mainly involved in cell proliferation, apoptosis, protein complex binding, extracellular space, etc., and associated with the changes in pathways such as focal adhesions and extracellular matrix (ECM) receptor interactions. qPCR showed that the expression of HIPK2 mRNA was up-regulated and the mRNA expressions of (microfibrillar-associated protein 5(MFAP5) and cyclin D1 (CCND1) were down-regulated, which were consistent with the results of microarray detection. Conclusion: Using human gene expression profiling chip, the DEGs in liver cancer xenograft tissues in nude mice after silencing CDC25Awere successfully screened, providing effective clues for exploring the effect of CDC25Aon the growth of liver cancer.
3.Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs.
Lina FU ; Xiuling XU ; Ruotong REN ; Jun WU ; Weiqi ZHANG ; Jiping YANG ; Xiaoqing REN ; Si WANG ; Yang ZHAO ; Liang SUN ; Yang YU ; Zhaoxia WANG ; Ze YANG ; Yun YUAN ; Jie QIAO ; Juan Carlos IZPISUA BELMONTE ; Jing QU ; Guang-Hui LIU
Protein & Cell 2016;7(3):210-221
Xeroderma pigmentosum (XP) is a group of genetic disorders caused by mutations of XP-associated genes, resulting in impairment of DNA repair. XP patients frequently exhibit neurological degeneration, but the underlying mechanism is unknown, in part due to lack of proper disease models. Here, we generated patient-specific induced pluripotent stem cells (iPSCs) harboring mutations in five different XP genes including XPA, XPB, XPC, XPG, and XPV. These iPSCs were further differentiated to neural cells, and their susceptibility to DNA damage stress was investigated. Mutation of XPA in either neural stem cells (NSCs) or neurons resulted in severe DNA damage repair defects, and these neural cells with mutant XPA were hyper-sensitive to DNA damage-induced apoptosis. Thus, XP-mutant neural cells represent valuable tools to clarify the molecular mechanisms of neurological abnormalities in the XP patients.
DNA Damage
;
DNA Repair
;
DNA-Binding Proteins
;
genetics
;
metabolism
;
Female
;
Humans
;
Induced Pluripotent Stem Cells
;
metabolism
;
pathology
;
Male
;
Models, Biological
;
Mutation
;
Neural Stem Cells
;
metabolism
;
pathology
;
Xeroderma Pigmentosum
;
genetics
;
metabolism
;
pathology