1.Exploration of radiotherapy as a combined treatment modality with in situ vaccines in the treatment of advanced soft tissue sarcomas
TAN Siyi, ; WANG Xiaolu ; WANG Qin ; DU Shiyao ; YIN Fangtao ; YANG Yiqi ; SUN Wu ; LIU Juan ; ZHOU Xia ; LIU Baorui, ; LI Rutian
Chinese Journal of Cancer Biotherapy 2025;32(4):418-424
[摘 要] 目的:评估放疗作为原位疫苗的联合治疗模式在晚期软组织肉瘤(STS)患者中的有效性和安全性。方法:回顾性分析2020年12月至2024年9月期间在南京大学医学院附属鼓楼医院肿瘤中心接受联合治疗模式的12例晚期STS患者的临床资料。12例患者均接受了联合治疗。放疗主要以大分割为主。靶向治疗:安罗替尼10例、阿帕替尼2例。免疫治疗以PD-1抗体为主。主要研究终点为疾病控制率(DCR),次要研究终点为客观有效率(ORR)及安全性。结果:接受联合治疗的12例STS患者中有0例CR,4例PR,7例SD,1例PD。ORR为33%,DCR为91.7%,其中靶病灶的DCR为100%。12例患者中,9例出现Ⅰ~Ⅱ级不良反应。最常发生的血液学不良反应是贫血(6例)、肝功能检查结果异常(3例)。最常发生的非血液学不良反应是尿蛋白(5例)、高血压(4例)、甲状腺功能异常(3例)、厌食(3例)、恶心呕吐(2例);仅2例发生Ⅲ级血液毒性,有1例发生Ⅲ级气胸。结论:放疗作为原位疫苗的联合治疗模式在晚期STS患者中展现出较高的DCR,且未出现严重不良反应。该联合治疗模式具有良好的有效性与安全性。
2.Mechanism of Naoxintong Capsules Against Ischemia-reperfusion Injury in Rats via Inhibiting Pericyte Contraction Based on RHOA/ROCK1 Pathway
Yinlian WEN ; Jinfeng SHANG ; Bohong WANG ; Wanting WEI ; Xiaolu ZHANG ; Guijinfeng HUANG ; Xin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):159-167
ObjectiveTo investigate the mechanism of Naoxintong capsules on ischemia-reperfusion (I/R) injury in rats based on the changes of pericytes mediated by Ras homolog family member A (RHOA)/Rho-associated coiled-coil containing protein kinase 1 (ROCK1) pathway. MethodsNinety rats (15 rats for each group) were randomly divided into a sham operation group, a model group, a positive control group receiving Ginkgo biloba extract (21.6 mg·kg-1), and groups receiving Naoxintong capsules at low, medium, and high doses of 55, 110, and 220 mg·kg-1 (NXT-L, NXT-M, and NXT-H groups), respectively. Except for those in the sham operation group, all rats were subjected to transient middle cerebral artery occlusion (tMCAO) to establish the experiment model. Nerve function was assessed using a neurological function score. Cerebral blood flow was detected using a laser speckle contrast imager, and the cerebral infarction rate was calculated using 2,3,5-Triphenyl tetrazolium chloride (TTC) staining. Pathological changes were observed by hematoxylin-eosin (HE) staining and Nissl staining, while pericyte morphology was observed via transmission electron microscopy. Blood-brain barrier destruction was observed by Evans blue staining. Albumin and ischemia-modified albumin levels were measured using assay kits. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to detect the mRNA and protein expression levels of RHOA, ROCK1, platelet-derived growth factor receptor β (PDGFRB), α-smooth muscle actin (α-SMA), tight junction protein (ZO-1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9). ResultsCompared with the sham operation group, the model group exhibited decreased neurological function scores, higher percentage reduction in blood flow, and increased cerebral infarction rates (P<0.01). Additionally, cortical neuronal nucleus shrinkage, edema, a decreased number of Nissl bodies, reduced pericyte area, elevated albumin content in the cortex (P<0.05), and increased ischemic modified albumin levels (P<0.01) were observed. The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were increased (P<0.01), while those of ZO-1 were decreased. Compared with the model group, all treatment groups showed improved neurological function scores, lower percentage reduction in blood flow, reduced cerebral infarction rates (P<0.01), alleviated cortical histological changes, increased number of Nissl bodies, expanded pericyte area, decreased albumin content in the cortex, and reduced ischemia-modified albumin levels (P<0.01). The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were decreased (P<0.01), while those of ZO-1 were increased. Among the treatment groups, the NXT-M group showed the most pronounced improvement in cerebral I/R injury. ConclusionNaoxintong capsules can restore cerebral blood supply, reduce microcirculation disturbance, and protect blood-brain barrier in rats with I/R injury. Its mechanism of action may be related to the inhibition of the RHOA/ROCK1 signaling pathway and reduced pericyte contraction.
3.Mechanism of Naoxintong Capsules Against Ischemia-reperfusion Injury in Rats via Inhibiting Pericyte Contraction Based on RHOA/ROCK1 Pathway
Yinlian WEN ; Jinfeng SHANG ; Bohong WANG ; Wanting WEI ; Xiaolu ZHANG ; Guijinfeng HUANG ; Xin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):159-167
ObjectiveTo investigate the mechanism of Naoxintong capsules on ischemia-reperfusion (I/R) injury in rats based on the changes of pericytes mediated by Ras homolog family member A (RHOA)/Rho-associated coiled-coil containing protein kinase 1 (ROCK1) pathway. MethodsNinety rats (15 rats for each group) were randomly divided into a sham operation group, a model group, a positive control group receiving Ginkgo biloba extract (21.6 mg·kg-1), and groups receiving Naoxintong capsules at low, medium, and high doses of 55, 110, and 220 mg·kg-1 (NXT-L, NXT-M, and NXT-H groups), respectively. Except for those in the sham operation group, all rats were subjected to transient middle cerebral artery occlusion (tMCAO) to establish the experiment model. Nerve function was assessed using a neurological function score. Cerebral blood flow was detected using a laser speckle contrast imager, and the cerebral infarction rate was calculated using 2,3,5-Triphenyl tetrazolium chloride (TTC) staining. Pathological changes were observed by hematoxylin-eosin (HE) staining and Nissl staining, while pericyte morphology was observed via transmission electron microscopy. Blood-brain barrier destruction was observed by Evans blue staining. Albumin and ischemia-modified albumin levels were measured using assay kits. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to detect the mRNA and protein expression levels of RHOA, ROCK1, platelet-derived growth factor receptor β (PDGFRB), α-smooth muscle actin (α-SMA), tight junction protein (ZO-1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9). ResultsCompared with the sham operation group, the model group exhibited decreased neurological function scores, higher percentage reduction in blood flow, and increased cerebral infarction rates (P<0.01). Additionally, cortical neuronal nucleus shrinkage, edema, a decreased number of Nissl bodies, reduced pericyte area, elevated albumin content in the cortex (P<0.05), and increased ischemic modified albumin levels (P<0.01) were observed. The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were increased (P<0.01), while those of ZO-1 were decreased. Compared with the model group, all treatment groups showed improved neurological function scores, lower percentage reduction in blood flow, reduced cerebral infarction rates (P<0.01), alleviated cortical histological changes, increased number of Nissl bodies, expanded pericyte area, decreased albumin content in the cortex, and reduced ischemia-modified albumin levels (P<0.01). The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were decreased (P<0.01), while those of ZO-1 were increased. Among the treatment groups, the NXT-M group showed the most pronounced improvement in cerebral I/R injury. ConclusionNaoxintong capsules can restore cerebral blood supply, reduce microcirculation disturbance, and protect blood-brain barrier in rats with I/R injury. Its mechanism of action may be related to the inhibition of the RHOA/ROCK1 signaling pathway and reduced pericyte contraction.
4.Strategies for Optimizing Tumor Physical Microenvironment to Enhance in Situ Vaccine Efficacy
Han LI ; Xiaolu WANG ; Changhua YU ; Baorui LIU ; Rutian LI
Cancer Research on Prevention and Treatment 2025;52(10):840-847
In situ tumor vaccine has become an important strategy in cancer immunotherapy owing to its ability to induce immune responses locally and overcome tumor heterogeneity. However, the abnormal structure and mechanical properties of the tumor’s physical microenvironment significantly limit the efficiency of vaccine delivery and immune efficacy. In this review, the key factors in the tumor’s physical microenvironment, including solid pressure, interstitial fluid pressure, matrix stiffness, and tissue microstructure, are systematically discussed. Their obstructive roles in immune cell infiltration, antigen presentation, and immune activation are analyzed. The potential of approaches, such as radiotherapy, anti-angiogenic therapy, extracellular matrix degradation agents, nanomaterials, and hydrogel delivery platforms, in reshaping the tumor’s physical microenvironment is explored. This review aims to offer theoretical and practical guidance for optimizing in situ vaccine strategies through the regulation of the tumor’s physical microenvironment, ultimately advancing the precision and effectiveness of cancer immunotherapy.
5.USP20 as a super-enhancer-regulated gene drives T-ALL progression via HIF1A deubiquitination.
Ling XU ; Zimu ZHANG ; Juanjuan YU ; Tongting JI ; Jia CHENG ; Xiaodong FEI ; Xinran CHU ; Yanfang TAO ; Yan XU ; Pengju YANG ; Wenyuan LIU ; Gen LI ; Yongping ZHANG ; Yan LI ; Fenli ZHANG ; Ying YANG ; Bi ZHOU ; Yumeng WU ; Zhongling WEI ; Yanling CHEN ; Jianwei WANG ; Di WU ; Xiaolu LI ; Yang YANG ; Guanghui QIAN ; Hongli YIN ; Shuiyan WU ; Shuqi ZHANG ; Dan LIU ; Jun-Jie FAN ; Lei SHI ; Xiaodong WANG ; Shaoyan HU ; Jun LU ; Jian PAN
Acta Pharmaceutica Sinica B 2025;15(9):4751-4771
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy with a poor prognosis, despite advancements in treatment. Many patients struggle with relapse or refractory disease. Investigating the role of the super-enhancer (SE) regulated gene ubiquitin-specific protease 20 (USP20) in T-ALL could enhance targeted therapies and improve clinical outcomes. Analysis of histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) data from six T-ALL cell lines and seven pediatric samples identified USP20 as an SE-regulated driver gene. Utilizing the Cancer Cell Line Encyclopedia (CCLE) and BloodSpot databases, it was found that USP20 is specifically highly expressed in T-ALL. Knocking down USP20 with short hairpin RNA (shRNA) increased apoptosis and inhibited proliferation in T-ALL cells. In vivo studies showed that USP20 knockdown reduced tumor growth and improved survival. The USP20 inhibitor GSK2643943A demonstrated similar anti-tumor effects. Mass spectrometry, RNA-Seq, and immunoprecipitation revealed that USP20 interacted with hypoxia-inducible factor 1 subunit alpha (HIF1A) and stabilized it by deubiquitination. Cleavage under targets and tagmentation (CUT&Tag) results indicated that USP20 co-localized with HIF1A, jointly modulating target genes in T-ALL. This study identifies USP20 as a therapeutic target in T-ALL and suggests GSK2643943A as a potential treatment strategy.
6.The impact of different chest compression frequencies on cardiopulmonary resuscitation outcomes in domestic pigs.
Nana XU ; Jiabi ZHANG ; Jialin LUO ; Li WANG ; Yong CHEN ; Lijun ZHOU ; Bihua CHEN ; Lan LUO ; Xiaolu LIU ; Shuju LUO ; Yong WANG ; Zunwei LUO ; Li DING ; Mei LI ; Manhong ZHOU
Chinese Critical Care Medicine 2025;37(5):472-476
OBJECTIVE:
To compare the effects of different chest compression rates (60-140 times/min) on hemodynamic parameters, return of spontaneous circulation (ROSC), resuscitation success, and survival in a porcine model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR).
METHODS:
Forty healthy male domestic pigs were randomly divided into five groups based on chest compression rate: 60, 80, 100, 120, and 140 times/min (n = 8). All animals underwent standard anesthesia and tracheal intubation. A catheter was inserted via the left femoral artery into the thoracic aorta to monitor aortic pressure (AOP), and another via the right external jugular vein into the right atrium to monitor right atrial pressure (RAP). In each group, animals were implanted with a stimulating electrode via the right external jugular vein to the endocardium, and ventricular fibrillation (VF) was induced by delivering alternating current stimulation, resulting in CA. After a 1-minute, manual chest compressions were performed at the assigned rate with a compression depth of 5 cm. The first defibrillation was delivered after 2 minutes of CPR. No epinephrine or other pharmacologic agents were administered during the entire resuscitation process. From 1 minute before VF induction to 10 minutes after ROSC, dynamic monitoring of AOP, coronary perfusion pressure (CPP), and partial pressure of end-tidal carbon dioxide (PETCO2). Cortical ultrastructure was examined 24 hours post-ROSC using transmission electron microscopy.
RESULTS:
With increasing compression rates, both the total number of defibrillations and cumulative defibrillation energy significantly decreased, reaching their lowest levels in the 120 times/min group. The number of defibrillations decreased from (4.88±0.83) times in the 60 times/min group to (2.25±0.71) times in the 120 compressions/min group, and energy from (975.00±166.90)J to (450.00±141.42)J. However, both parameters increased again in the 140 times/min group [(4.75±1.04)times, (950.00±207.02)J], the differences among the groups were statistically significant (both P < 0.01). As compression frequency increased, PETCO2, pre-defibrillation AOP and CPP significantly improved, peaking in the 120 times/min group [compared with the 60 times/min group, PETCO2 (mmHg, 1 mmHg≈0.133 kPa): 18.69±1.98 vs. 8.67±1.30, AOP (mmHg): 95.13±7.06 vs. 71.00±6.41, CPP (mmHg): 14.88±6.92 vs. 8.57±3.42]. However, in the 140 times/min group, these values declined significantly again [PETCO2, AOP, and CPP were (10.59±1.40), (72.38±11.49), and (10.36±4.57) mmHg, respectively], the differences among the groups were statistically significant (all P < 0.01). The number of animals achieving ROSC, successful resuscitation, and 24-hour survival increased with higher compression rates, reaching a peak in the 120 times/min group (compared with the 60 times/min group, ROSC: 7 vs. 2, successful resuscitation: 7 vs. 2, 24-hour survival: 7 vs.1), then decreased again in the 140 times/min group (the animals that ROSC, successfully recovered and survived for 24 hours were 3, 3, and 2, respectively). Transmission electron microscopy revealed that in the 60, 80, and 140 times/min groups, nuclear membranes in cerebral tissue were irregular and incomplete, nucleoli were indistinct, and mitochondria were swollen with reduced cristae and abnormal morphology. In contrast, the 100 times/min and 120 times/min groups exhibited significantly attenuated ultrastructural damage.
CONCLUSIONS
Among the tested chest compression rates of 60-140 times/min, a chest compressions frequency of 120 times/min is the most favorable hemodynamic profile and outcomes during CPR in a porcine CA model. However, due to the wide spacing between groups, further investigation is needed to determine the optimal compression rate range more precisely.
Animals
;
Cardiopulmonary Resuscitation/methods*
;
Swine
;
Male
;
Heart Arrest/therapy*
;
Heart Massage/methods*
;
Hemodynamics
7.Fabrication and evaluation of dexmedetomidine hydrochloride microneedles based on 3D printing.
Yuanke YANG ; Xiaolu HAN ; Xianfu LI ; Xiaoxuan HONG ; Shanshan YANG ; Chunyan LIU ; Zengming WANG ; Aiping ZHENG
Chinese Journal of Biotechnology 2025;41(8):3214-3227
Compared with conventional transdermal drug delivery systems, dissolving microneedles significantly enhance drug bioavailability by penetrating the stratum corneum barrier and achieving intradermal drug delivery. In order to improve the transdermal bioavailability of dexmedetomidine hydrochloride, in this study, a novel microneedle delivery system was developed for dexmedetomidine hydrochloride based on 3D printing combined with micro-molding. By systematically optimizing the microneedle geometrical parameters, array arrangement, and preparation process parameters, we determined the optimal ratio of drug-carrying matrix as 15% PVP (polyvinyl pyrrolidone) K90. The microneedles exhibited significant drug loading gradients, with mean content of (209.99±27.56) μg/patch, (405.31±30.31) μg/patch, and (621.61±34.43) μg/patch. They showed a regular pyramidal structure under SEM and handheld electron microscopy, and their mechanical strength allowed effective penetration into the stratum corneum. The surface contact angles were all < 90°, indicating excellent hydrophilicity. The microneedles dissolved completely within 10 min after skin insertion, achieving a cumulative release rate of 90% (Higuchi model, r=0.996) during 2 hours of in vitro transdermal permeation. The cytotoxicity test and hemolysis test verified good biocompatibility. Pharmacodynamic evaluation showed that the microneedle group demonstrated pain-relieving effect within 15 min, with the pain threshold at the time point of 60 min being 3 times that in the transdermal cream group. The microneedle system developed in this study not only offers an efficient drug delivery option for patients but also establishes an innovative platform for rapid percutaneous delivery of hydrophilic drugs, demonstrating significant potential in perioperative pain management.
Dexmedetomidine/pharmacokinetics*
;
Printing, Three-Dimensional
;
Needles
;
Drug Delivery Systems/methods*
;
Administration, Cutaneous
;
Animals
;
Microinjections/instrumentation*
;
Skin Absorption
;
Skin/metabolism*
8.Innovative insights into extrachromosomal circular DNAs in gynecologic tumors and reproduction.
Ning WU ; Ling WEI ; Zhipeng ZHU ; Qiang LIU ; Kailong LI ; Fengbiao MAO ; Jie QIAO ; Xiaolu ZHAO
Protein & Cell 2024;15(1):6-20
Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.
Male
;
Female
;
Animals
;
Humans
;
Swine
;
DNA, Circular/genetics*
;
Genital Neoplasms, Female
;
Semen
;
DNA
;
Reproduction
9.Application evaluation of cardiopulmonary exercise test to guide comprehensive pulmonary rehabilitation in patients with pneumoconiosis
Congxia YAN ; Baoping LI ; Fuhai SHEN ; Hong CAO ; Jing LI ; Lirong ZHANG ; Zhiping SUN ; Bowen HOU ; Lini GAO ; Xinyu LI ; Chaoyi MA ; Xiaolu LIU
Journal of Environmental and Occupational Medicine 2024;41(1):47-53
Background At present, the practice of pulmonary rehabilitation for pneumoconiosis in China is in a primary stage. The basis for formulating an individualized comprehensive pulmonary rehabilitation plan is still insufficient, which is one of the factors limiting the development of community-level rehabilitation work. Objective To formulate an exercise prescription based on maximum heart rate measured by cardiopulmonary exercise test (CPET), conduct an individualized comprehensive pulmonary rehabilitation program with the exercise prescription for patients with stable pneumoconiosis, and evaluate its role in improving exercise endurance and quality of life, thus provide a basis for the application and promotion of pulmonary rehabilitation. Methods A total of 68 patients were recruited from the Occupational Disease Prevention Hospital of Jinneng Holding Coal Industry Group Co., Ltd. from April to August 2022 , and were divided into an intervention group and a control group by random number table method, with 34 cases in each group. All the pneumoconiosis patients participated in a baseline test. The control group was given routine drug treatment, while the intervention group received multidisciplinary comprehensive pulmonary rehabilitation treatment on the basis of routine drug treatment, including health education, breathing training, exercise training, nutrition guidance, psychological intervention, and sleep management, whose exercise intensity was determined according to the maximum heart rate provided by CPET. The rehabilitation training lasted for 24 weeks. Patients were evaluated at registration and the end of study respectively. CPET was used to measure peak oxygen uptake per kilogram (pVO2/kg), anaerobic threshold (AT), carbon dioxide equivalent of ventilation (EqCO2), maximum metabolic equivalent (METs), and maximum work (Wmax). The modified British Medical Research Council Dyspnea Questionnaire (mMRC), Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS), Pittsburgh Sleep Quality Index (PSQI), Chronic Obstructive Pulmonary Disease Assessment Test (CAT), and Short Form of Health Survey (SF-36) were used to evaluate the potential effect of the comprehensive pulmonary rehabilitation program. Results Among the included 68 patients, 63 patients were having complete data, then 31 cases were assigned in the control group and 32 cases in the interventional group. Before the intervention, there was no significant difference in pVO2/kg, AT, EqCO2, METs, or Wmax between the two groups (P>0.05). At the end of the trail, the indicators like pVO2/kg [(19.81±2.38) mL·(min·kg)−1], AT [(14.48±2.33) mL·(min·kg)−1], METs (5.64±0.69), and Wmax [(85.25±14) W] of patients in the intervention group were all higher than those [(13.90±2.37) mL·(min·kg)−1, (11.70±1.94) mL·(min kg)−1, (3.97±0.70), and (61.77±14.72) W, respectively] in the control group (P<0.001); there was no significant difference in EqCO2 between the two groups (P=0.083). Before the trial, there was no significant difference in mMRC, SAS, SDS, PSQI, or CAT scores between the two groups (P>0.05). At the end of the trail, the mMRC score (1.16±0.57), SAS score (27.93±2.12), SDS score (26.48±1.44), PSQI score (1.08±0.88), and CAT score (4.34±3.28) of patients in the intervention group were lower than those [(2.03±0.83), (35.87±6.91), (34.23±6.65), (5.37±3.03), and (13.87±7.53), respectively] in the control group (P<0.001). The SF-36 scores of bodily pain (94.13±10.72), general health (87.50±5.68), vitality (95.31±5.53), mental health (99.88±0.71), and health changes (74.22±4.42) in the intervention group were higher than those [(71.87±32.72), (65.81±15.55), (74.52±16.45), (86.97±16.56), and (29.84±13.50), respectively] in the control group (P<0.001), and no significant difference was found in social functioning and role emotional scores (P>0.05). Conclusion Comprehensive pulmonary rehabilitation can increase the oxygen intake and exercise endurance of pneumoconiosis patients, ameliorate dyspnea symptoms, elevate psychological state and sleep quality, and improve the quality of life.
10.Differential metabolites of bronchoalveolar lavage fluid from coal worker's pneumoconiosis patients
Chaoyi MA ; Baoping LI ; Fuhai SHEN ; Zhiping SUN ; Gang CHEN ; Guoxuan MA ; Yongmei ZHAO ; Bowen HOU ; Lini GAO ; Qianqian LI ; Xiaolu LIU ; Xinyu LI
Journal of Environmental and Occupational Medicine 2024;41(6):617-624
Background It is a research hotspot to study the changes of metabolites and metabolic pathways in the process of coal worker's pneumoconiosis (CWP) by metabonomics and to explore its pathogenesis. Objective To study the change of metabolites in bronchoalveolar lavage fluid (BALF) of patients with CWP and explore the metabolic regulation mechanism of the disease. Methods Patients with CWP who met the national diagnostic criteria according to Diagnosis of occupational pneumoconiosis (GBZ 70-2015) and underwent massive whole lung lavage were selected as the case group, and patients with tracheostenosis who underwent bronchoscopy were selected as the control group. BALF samples were collected from the cases and the controls. After filtering out large particles and mucus, the supernatant was stored in a −80 ℃ refrigerator. The samples were detected and analyzed by liquid chromatography-mass spectrometry after adding extraction solution, cold bath ultrasonication, and high-speed centrifugation, and the metabolic profiles and related data of CWP patients were obtained. The differential metabolites related to the occurrence and development of CWP were screened by multiple statistical analysis; furthermore, we searched the Kyoto Encyclopedia of Genes and Genomes (KEGG) database for potential metabolic pathways involved in the progression. Results There was no significant difference in the general conditions of the subjects, such as weight, height, age, and length of service among the stage I group, the stage II group, the stage III group, and the control group (P˃0.05). When comparing the CWP stage I group with the control group, 48 differential metabolites were screened out, among which 14 were up-regulated and 34 were down-regulated. A total of 66 differential metabolites were screened out between the patients with CWP stage II and the controls, 14 up-regulated and 52 down-regulated differential metabolites. Compared with the control group, 63 differential metabolites were screened out in the patients with CWP stage III, including 11 up-regulated and 52 down-regulated differential metabolites. There were 36 differential metabolites that may be related to the occurrence of CWP, among which 11 differential metabolites were up-regulated, and 25 were down-regulated. Four significant differential metabolic pathways were identified through KEGG database query: linoleic acid metabolic pathway, alanine metabolic pathway, sphingolipid metabolic pathway, and glycerophospholipid metabolic pathway. Conclusion The metabolomic study of BALF show that there are 36 different metabolites in the occurrence and development of CWP, mainly associating with linoleic acid metabolism, alanine metabolism, sphingolipid metabolism, and glycerophospholipid metabolism pathways.

Result Analysis
Print
Save
E-mail