1.Mechanisms underlying interferon-mediated host innate immunity during influenza A virus infection.
Chao CHEN ; Xiaojuan CHI ; Qingling BAI ; Jilong CHEN
Chinese Journal of Biotechnology 2015;31(12):1671-1681
Influenza A virus can create acute respiratory infection in humans and animals throughout the world, and it is still one of the major causes of morbidity and mortality in humans worldwide. Numerous studies have shown that influenza A virus infection induces rapidly host innate immune response. Influenza A virus triggers the activation of signaling pathways that are dependent on host pattern recognition receptors (PRRs) including toll like receptors (TLRs) and RIG-I like receptors (RLRs). Using a variety of regulatory mechanisms, these signaling pathways activate downstream transcript factors that control expression of various interferons and cytokines, such as type I and type III interferons. Thus, these interferons stimulate the transcript of relevant interferon-stimulated genes (ISGs) and expression of the antiviral proteins, which are critical components of host innate immunity. In this review, we will highlight the mechanisms by which influenza A virus infection induces the interferon-mediated host innate immunity.
Cytokines
;
immunology
;
DEAD Box Protein 58
;
DEAD-box RNA Helicases
;
immunology
;
Humans
;
Immunity, Innate
;
Influenza A virus
;
Influenza, Human
;
immunology
;
Interferons
;
immunology
;
Receptors, Pattern Recognition
;
immunology
;
Signal Transduction
;
Toll-Like Receptors
;
immunology
2.Mechanism underlying the anterograde transport of the influenza A virus transmembrane proteins and genome in host cytoplasm.
Xiaojuan CHI ; Song WANG ; Yifan HUANG ; Jilong CHEN
Chinese Journal of Biotechnology 2012;28(9):1021-1030
Influenza virus assembly requires the completion of viral protein and vRNP transport to the assembly site at the plasma membrane. Therefore, efficient regulation of intracellular transport of the viral proteins and vRNPs to the surface of the host cell is especially important for virus morphogenesis. Influenza A virus uses the machineries of host cells to transport its own components including ribonucleoproteins (vRNPs) and three transmembrane proteins hemagglutinin (HA), neuraminidase (NA) and matrix 2 protein (M2). It has been shown that newly synthesized vRNPs are associated with active form of Rab11 and accumulate at recycling endosomes adjacent to the microtubule organizing center (MTOC) following nuclear export. Subsequently, they are transported along the microtubule network toward the plasma membranes in cargo vesicles. The viral transmembrane proteins are translated on the rough endoplasmic reticulum and transported to the virus assembly site at the plasma membrane. It has been found that several host factors such as ARHGAP21 and GTPase Cdc42 are involved in regulation of intracellular trafficking of influenza A virus transmembrane proteins including NA. In this review, we will highlight the current knowledge about anterograde transport and its regulation of the influenza A virus transmembrane proteins and genome in the host cytoplasm.
Cytoplasm
;
metabolism
;
GTP Phosphohydrolases
;
metabolism
;
GTPase-Activating Proteins
;
metabolism
;
Genome, Viral
;
Hemagglutinin Glycoproteins, Influenza Virus
;
metabolism
;
Humans
;
Influenza A virus
;
genetics
;
pathogenicity
;
physiology
;
Neuraminidase
;
metabolism
;
Protein Transport
;
Ribonucleoproteins
;
metabolism
;
Viral Matrix Proteins
;
metabolism
;
cdc42 GTP-Binding Protein
;
metabolism
3. Pyroptosis induced by different Enteroviruses infection in SH-SY5Y cell
Qiao QIAO ; Tao WU ; Xiaojuan ZHU ; Ying CHI ; Yiyue GE ; Huan FAN ; Yuhua QI ; Xiling GUO ; Lunbiao CUI
Chinese Journal of Experimental and Clinical Virology 2019;33(5):454-457
Objective:
To investigate the pyroptosis induced by different enteroviruses in human neuroblastoma cells SH-SY5Y and the differences among them.
Methods:
SH-SY5Y cells were infected with nine strains of enterovirus respectively, including enterovirus A71 (EV-A71), Coxsackievirus A (CA), Coxsackievirus B (CB), Echovirus (Echo). The cellular morphology of infected and control groups were observed and activity of Caspase-1 of infected and control groups were detected by flow cytometry at 48 h post infection.
Results:
The activity of Caspase-1 induced by EV-A71 was higher than control (
4.Generation of an induced pluripotent stem cell line from a patient with surfactant metabolism dysfunction carrying ABCA3 mutations
Zhichen TIAN ; Xin XIE ; Jinghan CHI ; Jia CHEN ; Danhua ZHAO ; Yanmei HE ; Xiaojuan YIN
Chinese Journal of Applied Clinical Pediatrics 2024;39(2):98-103
Objective:Induced pluripotent stem cells (iPSCs) cell lines were established using peripheral blood mononuclear cells (PBMCs) from a patient suffering from neonatal respiratory distress syndrome (NRDS) who carried Adenosine triphosphate-binding cassette transporter A3 ( ABCA3) compound heterozygous mutations. Methods:Cell experimental research.Peripheral venous blood was collected and PBMCs were isolated and cultured in vitro. PBMCs were transfected with non-integrated Sendai vector carrying reprogramming factors.The chromosome karyotypes of the established iPSCs were analyzed.Immunofluorescence and flow cytometry were used to detect pluripotency markers of stem cells and verify their differentiation potential.Sanger sequencing was performed to analyze gene mutations.In addition, short tandem repeat (STR) analysis was performed, polymerase chain reaction(PCR) and agarose gel electrophoresis were used to detect virus residual. Results:Karyotype analysis of established iPSCs cell lines showed normal diploid 46, XY karyotype.Immunofluorescence showed positive staining of stem cell pluripotency markers OCT4, SSEA4, Nanog and Sox2.Flow cytometry was used to detected stem cell pluripotency markers and showed expression of TRA-1-60, SSEA-4 and OCT4.After differentiation into all three germ layers, immunofluorescence was performed to detect ectoderm (Pax-6), mesoderm (Brachyury) and endoderm alpha-fetoprotein markers, and the results showed positive staining, which confirmed that the iPSCs had the potential to differentiate.Sanger sequencing showed c. 3997_3998del and c. 3137C>T compound heterozygous mutations.STR analysis showed they originate from PBMCs, and no Sendai virus residual was detected by PCR and agarose gel electrophoresis.Conclusions:In this study, PBMCs from patient carrying ABCA3 compound heterozygous mutations was used to establish iPSCs cell lines.The research lays a foundation for the study of pathogenesis, therapeutic drug screening and cell therapy of NRDS caused by ABCA3 gene mutations.
5.Regulatory mechanism of long noncoding RNA in the occurrence and development of leukemia: a review.
Tingting LI ; Jinxuan HONG ; Yun MA ; Bincai YANG ; Guoqing WANG ; Song WANG ; Jilong CHEN ; Xiaojuan CHI
Chinese Journal of Biotechnology 2021;37(11):3933-3944
Long noncoding RNAs (lncRNAs) are a class of RNA molecules that are greater than 200 nt in length and do not have protein-coding capabilities or encode micropeptides only. LncRNAs are involved in the regulation of cell proliferation, differentiation, apoptosis and other biological processes, and are closely associated with the occurrence, recurrence and metastasis of a variety of malignant hematologic diseases. This article summarizes the function, regulatory mechanism and potential clinical application of lncRNAs in leukemia. In general, lncRNAs regulate the occurrence and development of leukemia and the multi-drug resistance in chemotherapy through epigenetic modification, ribosomal RNA transcription, competitive binding with miRNA, modulating glucose metabolic pathway, and activating tumor-related signaling pathway. Studies on lncRNAs provide new references for understanding the pathogenesis of leukemia, uncovering new prognostic markers and potential therapeutic targets, and addressing the problems of drug resistance and post-treatment recurrence in patients in clinical treatment of leukemia.
Cell Proliferation
;
Humans
;
Leukemia/genetics*
;
MicroRNAs
;
Neoplasms
;
RNA, Long Noncoding/genetics*
6.3-Anhydro-6-hydroxy-ophiobolin A displays high in vitro and in vivo efficacy against influenza A virus infection.
Song WANG ; Xiaoqin LUO ; Ruoxiang YAN ; Quanxin WANG ; Qiuyue QI ; Xiaojuan CHI ; Lanlan ZHANG ; Ziding YU ; Binxiang CAI ; Ji-Long CHEN ; Hongwei LIU
Protein & Cell 2016;7(11):839-843