1.CTU diagnosis of 85 cases with repeat kidney and ureter duplication and its comparison with B-mode ultrasonography and IVU
Shanxi CHEN ; Yuantong GAO ; Xiaochan XIANG ; Min LUO ; Yang LI ; Xiaoyang WANG
The Journal of Practical Medicine 2014;(3):397-399
Objective To investigate the application values of B-mode ultrasonography , IVU and spiral CT urography (CTU) in duplication of kidney and ureter. Methods Data of the results from B-mode ultrasonography , IVU and spiral CTU on 85 cases with duplication of renal pelvis and ureter were retrospectively analyzed. Results The diagnostic accordance rates of B-mode ultrasonography , IVU and spiral CTU for duplication of kidney and ureter were 44.7%, 60.0% and 100%, respectively. CTU examination and image post-processing could clearly display the locations and degrees of dilatation or obstruction in duplication of kidney and ureter, and could also display the ectopic location and assess renal function. Conclusion The diagnostic accuracy rate of CTU examination and image post-processing for duplication of kidney and ureter is higher than those of B-mode ultrasonography and IVU.
2.Preparation and evaluation of doxorubicin hydrochloride liposomes modified by poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate.
Di ZHANG ; Jianying LI ; Xiaochan WANG ; Hongxin YUE ; Meina HU ; Xiu YU ; Huan XU
Acta Pharmaceutica Sinica 2015;50(9):1174-9
In this study, the buffering capacity of amphiphilic pH-sensitivity copolymer poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (PEOZ-CHMC) was evaluated. The ammonium sulfate gradient method was used to prepare doxorubicin hydrochloride (DOX x HCl)-loaded liposomes (DOX-L), and then the post-insertion method was used to prepare PEOZ-CHMC and polyethylene glycol-distearoyl phosphatidyl ethanolamine (PEG-DSPE) modified DOX x HCl-loaded liposomes (PEOZ-DOX-L and PEG-DOX-L). The physico-chemical properties, in vitro drugs release behavior, cellular toxicity and intracellular delivery of liposomes were evaluated, separately. The results showed that PEOZ-CHMC has a satisfactory buffering capacity. The sephadex G-50 column centrifugation method and dynamic light scattering were used to determine the encapsulation efficiency (EE) and particle size of liposomes. The EE and particle size of DOX-L were (97.3 ± 1.4) % and 120 nm, respectively, and the addition of PEOZ-CHMC or PEG-DSPE had no influence on EE and particle size. The zeta potentials of three kinds of liposomes were negative. The release behavior of various DOX liposomes in vitro was investigated by dialysis method. In phosphate buffer solution (PBS) at pH 7.4, DOX x HCl was released from PEOZ-DOX-L in a sustained manner. While in PBS at pH 5.0, the release rate of DOX x HCl from PEOZ-DOX-L increased significantly, which suggested DOX x HCl was released from PEOZ-DOX-L in a pH-dependent manner. The intracellular delivery of liposomes was investigated by confocal laser scanning microscopy (CLSM). The CLSM images indicated that PEOZ-DOX-L showed efficient intracellular trafficking including endosomal escape and release DOX x HCl into nucleus, as well as the DOX-L and PEG-DOX-L had no this effect. The cytotoxicity of liposomes against MCF-7 cells was detected by using MTT assay. The results showed that antiproliferative effects of PEOZ-DOX-L enhanced with pH value decreased, whereas DOX-L and PEG-DOX-L did not have any significant difference in inhibitions at different pH conditions. Therefore, the problems of the inhibition of cellular uptake of liposomes and the failed endosomal escape of pH-sensitive liposomes by PEG chain can be overcome by the pH-sensitive liposomes constructed by PEOZ-CHMC.
3.Extrapolating neurogenesis of mesenchymal stem/stromal cells on electroactive and electroconductive scaffolds to dental and oral-derived stem cells.
Boon Chin HENG ; Yunyang BAI ; Xiaochan LI ; Xuehui ZHANG ; Xuliang DENG
International Journal of Oral Science 2022;14(1):13-13
The high neurogenic potential of dental and oral-derived stem cells due to their embryonic neural crest origin, coupled with their ready accessibility and easy isolation from clinical waste, make these ideal cell sources for neuroregeneration therapy. Nevertheless, these cells also have high propensity to differentiate into the osteo-odontogenic lineage. One strategy to enhance neurogenesis of these cells may be to recapitulate the natural physiological electrical microenvironment of neural tissues via electroactive or electroconductive tissue engineering scaffolds. Nevertheless, to date, there had been hardly any such studies on these cells. Most relevant scientific information comes from neurogenesis of other mesenchymal stem/stromal cell lineages (particularly bone marrow and adipose tissue) cultured on electroactive and electroconductive scaffolds, which will therefore be the focus of this review. Although there are larger number of similar studies on neural cell lines (i.e. PC12), neural stem/progenitor cells, and pluripotent stem cells, the scientific data from such studies are much less relevant and less translatable to dental and oral-derived stem cells, which are of the mesenchymal lineage. Much extrapolation work is needed to validate that electroactive and electroconductive scaffolds can indeed promote neurogenesis of dental and oral-derived stem cells, which would thus facilitate clinical applications in neuroregeneration therapy.
Cell Differentiation
;
Mesenchymal Stem Cells/metabolism*
;
Neural Stem Cells/metabolism*
;
Neurogenesis
;
Tissue Scaffolds
4.Effect of orthodontic traction on the microstructure of dental enamel.
Zhixin LI ; Kailiang ZHANG ; Ruiping LI ; Lingdan XU ; Lulu HE ; Xiaochan PANG ; Jiyuan LU ; Baocheng CAO ; Baoping ZHANG
Journal of Southern Medical University 2020;40(8):1165-1171
OBJECTIVE:
To investigate the effect of orthodontic traction on the microstructure of dental enamel.
METHODS:
Forty-eight isolated premolars were randomly divided into 6 groups (=8), including Group A (blank control group), in which the teeth were bonded with the orthodontic brackets without any loading force; Groups B1, B2, and B3 where the teeth were bonded with the orthodontic brackets using clinical adhesives and loaded with 50 g force for 6 months, 200 g force for 6 months, and 200 g force for 1 month, respectively; and Groups C1 and C2, where the teeth were bonded with straight wire brackets using light curing bonding and chemical curing bonding techniques, respectively. All the teeth were embedded with non-decalcified epoxy resin. Scanning electron microscope (SEM), atomic force microscope (AFM), and energy spectrometer (EDS) were used to analyze interface morphology and elemental composition of the teeth sliced with a hard tissue microtome.
RESULTS:
Compared with those in Group A, the teeth in the other 5 groups showed increased adhesive residue index with microcracks and void structures on the enamel surface under SEM; AFM revealed microcracks on the enamel surface with angles to the grinding direction. A larger loading force on the bracket resulted in more microcracks on the enamel interface. The interface roughness differed significantly between Groups A and C2, and the peak-to-valley distance differed significantly between Groups A, C, and C2.
CONCLUSIONS
Orthodontic traction can cause changes in the microstructure of normal dental enamel.
Dental Enamel
;
Materials Testing
;
Orthodontic Brackets
;
Resin Cements
;
Surface Properties
;
Traction