1.Separation of chemical constituents of Tibetan medicine Fallopia aubertii L.Henry Holub by two-dimensional liquid chromatography
Shenghui SHI ; Xiao LIU ; Dong CHEN ; Dijun JI ; Qian MA ; Yongchang LU
Journal of Pharmaceutical Practice and Service 2025;43(9):443-448
Objective To study the chemical constituents of Fallopia aubertii L.Henry Holub. Methods The chemical constituents of Fallopia aubertii L.Henry Holub. were separated and purified by online two-dimensional preparative liquid chromatography and identified by physical and chemical constants and spectral analysis. The inhibitory activities on xanthine oxidase were determined by ultraviolet spectrophotometry. Results Ten compounds were isolated from the extract of Fallopia aubertii L.Henry Holub, including isotachioside(1), 3,4,5-trimethoxyphenyl-(6'-O-galloyl)-O-β-D-Glucopyranoside(2), 1-hydroxy-,4,5-1-O-[6'-O-(4''-carboxy-1'',3'',5'trihydrotrimethoxyphenylxy)-phenyl]-β-D-glucopyranoside(3), myricetrin(4), myricetin(5), rutin(6), quercetin-3-O-β-D-galactoside(7), quercetin-3-O-β-D-glucopyranoside(8), lyciumideA(9), and N-trans-Feruloyltyramine(10). The inhibitory activity test results showed that the IC50 of compound 5 was 15.92 μmol/L, and the IC50 of compound 6 was 87.36 μmol/L. Conclusion Compounds 1,2,3,4 and 8 were isolated from Medicago polymorpha for the first time. Compounds 5 and 6 had xanthine oxidase inhibitory activity.
2.Global and Chinese burden of non-alcoholic fatty liver disease in chronic liver disease: Findings from the Global Burden of Disease Study 2021.
Xinyu ZHAO ; Dong XU ; Wei JI ; Zhengzhao LU ; Cheng HUANG ; Jingjie ZHAO ; Tingting XIAO ; Dongxu WANG ; Yuanyuan KONG ; Jidong JIA ; Hong YOU
Chinese Medical Journal 2025;138(14):1741-1751
BACKGROUND:
Chronic liver disease (CLD), mainly non-alcoholic fatty liver disease (NAFLD), is a significant public health concern worldwide. This study aims to quantify the burden of NAFLD in CLD globally and within China, using data from the Global Burden of Disease (GBD) Study 2021, providing crucial insights for global and local health policies.
METHODS:
The study used comprehensive data from the GBD study 2021. It included estimates of prevalence, incidence, mortality, and disability-adjusted life years (DALYs). Age-standardized rates and average annual percent change (AAPC) from 2011 to 2021 were reported. A meticulous decomposition analysis was conducted.
RESULTS:
In 2021, there were 1582.5 million prevalent cases, 47.6 million incident cases, 1.4 million deaths, and 44.4 million DALYs attributable to CLD, globally. Among these, NAFLD has emerged as the predominant cause, accounting for 78.0% of all prevalent CLD cases (1234.7 million) and 87.2% of incident cases (41.5 million). Correspondingly, NAFLD had the highest age-standardized prevalence (15,017.5 per 100,000 population) and incidence (876.5 per 100,000 population) rates among CLDs. In addition, China's CLD age-standardized prevalence rate was 21,659.5 per 100,000 population, and the age-standardized incidence rate was 752.6 per 100,000 population, higher than the global average. From 2011 to 2021, the global prevalence rate of CLD increased slowly (AAPC = 0.17), consistent with the trend in China (AAPC = 0.23). Furthermore, the prevalence rate of NAFLD rose significantly in China (AAPC = 1.30) compared with the global average (AAPC = 0.91). Decomposition analysis also showed the worldwide increase in deaths and DALYs for NAFLD, which were primarily attributable to population growth and aging.
CONCLUSIONS
The burden of CLD and NAFLD remains substantial globally and within China in terms of high prevalence and incidence. As such, this underscores the need for targeted prevention and treatment strategies. These findings emphasize the importance of continued surveillance and research to mitigate the growing impact of liver diseases on global and Chinese health systems.
Humans
;
Non-alcoholic Fatty Liver Disease/mortality*
;
Global Burden of Disease
;
China/epidemiology*
;
Prevalence
;
Male
;
Disability-Adjusted Life Years
;
Female
;
Incidence
;
Middle Aged
;
Chronic Disease
;
Adult
;
Quality-Adjusted Life Years
;
Liver Diseases/epidemiology*
;
Aged
3.Reduction in RNF125-mediated RIG-I ubiquitination and degradation promotes renal inflammation and fibrosis progression.
Lu-Xin LI ; Ting-Ting JI ; Li LU ; Xiao-Ying LI ; Li-Min LU ; Shou-Jun BAI
Acta Physiologica Sinica 2025;77(3):385-394
Persistent inflammation plays a pivotal role in the initiation and progression of renal fibrosis. Activation of the pattern recognition receptor retinoic acid-inducible gene-I (RIG-I) is implicated in the initiation of inflammation. This study aimed to investigate the upstream mechanisms that regulates the activation of RIG-I and its downstream signaling pathway. Eight-week-old male C57BL/6 mice were used to establish unilateral ureteral obstruction (UUO)-induced renal fibrosis model, and the renal tissue samples were collected 14 days later for analysis. Transforming growth factor-β (TGF-β)-treated mouse renal tubular epithelial cells were used in in vitro studies. The results demonstrated that, compared to the control group, UUO kidney exhibited significant fibrosis, which was accompanied by the increases of RIG-I, p-NF-κB p65 and inflammatory cytokines, such as TNF-α and IL-1β. Additionally, the protein level of the E3 ubiquitin ligase RNF125 was significantly downregulated and predominantly localized in the renal tubular epithelial cells. Similarly, the treatment of tubular cells with TGF-β induced the increases in RIG-I, p-NF-κB p65 and inflammatory cytokines while decreasing RNF125. Co-immunoprecipitation (Co-IP) assays confirmed that RNF125 was able to interact with RIG-I. Overexpression of RNF125 promoted the ubiquitination of RIG-I, and accelerated its degradation via the ubiquitin-proteasome pathway. Overexpression of RNF125 in UUO kidneys and in vitro tubular cells effectively mitigated the inflammatory response and renal fibrosis. In summary, our results demonstrated that the decrease in RNF125 under pathological conditions led to reduction in RIG-I ubiquitination and degradation, activation of the downstream NF-κB signaling pathway and increase in inflammatory cytokine production, which promoted the progression of renal fibrosis.
Animals
;
Fibrosis
;
Male
;
Ubiquitination
;
Mice
;
Mice, Inbred C57BL
;
DEAD Box Protein 58
;
Ubiquitin-Protein Ligases/physiology*
;
Inflammation/metabolism*
;
Ureteral Obstruction/complications*
;
Kidney/pathology*
;
Signal Transduction
;
Transforming Growth Factor beta/pharmacology*
4.Effects of drought stress training on polysaccharide accumulation and drought resistance of Codonopsis pilosula.
Lu-Lu WANG ; Xiao-Lin WANG ; Zhe-Yu LIU ; Li-Zhen WANG ; Jia-Tong SHI ; Jiao-Jiao JI ; Jian-Ping GAO ; Yun-E BAI
China Journal of Chinese Materia Medica 2025;50(3):672-681
In order to clarify the effects of drought stress training on the quality and drought resistance of Codonopsis pilosula, this study used PEG to simulate drought stress and employed potting with water control for the drought stress training of C. pilosula plants. The polysaccharide content, secondary metabolites, antioxidant system, and photosynthetic pigment system of C. pilosula after drought stress training were analyzed. The results showed that the content of fructans in the root of C. pilosula increased after two rounds of drought stress treatment, and it was significantly higher than that of the control group. The accumulation of fructans in the root of C. pilosula showed an upward trend during the rehydration treatment. The content of lobetyolin and tangshenoside Ⅰ increased after drought stress treatment compared with that of the control group. The rehydration treatment caused first increasing and then decreasing in the content of lobetyolin, while it had no significant effect on the tangshenoside Ⅰcontent. The content of photosynthetic pigments decreased after drought stress treatment, and it gradually increased during the first round of rehydration and the second round of rehydration. Moreover, the increase was faster in the second round of rehydration than in the first round of rehydration. The content of the peroxidation product malondialdehyde(MDA) and the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) increased after drought stress treatment compared with those of the control group, and they showed a tendency of decreasing during rehydration. Moreover, the decrease was faster in the second round of rehydration than in the first round of rehydration. When the plants of C. pilosula after drought stress training were again subjected to severe drought stress, the wilting rate decreased significantly, and the biomass increases significantly. This study showed that the drought stress training could promote the accumulation of polysaccharides and secondary metabolites in the root of C. pilosula. When encountering drought stress again, C. pilosula plants could quickly regulate the antioxidant system and delay the decomposition of chlorophyll to respond to drought stress. The findings provide a theoretical basis for the ecological cultivation of C. pilosula in arid and semi-arid areas.
Codonopsis/growth & development*
;
Droughts
;
Polysaccharides/metabolism*
;
Stress, Physiological
;
Water/metabolism*
;
Antioxidants/metabolism*
;
Photosynthesis
;
Drought Resistance
5.Thoughts and practices on research and development of new traditional Chinese medicine drugs under "three combined" evaluation evidence system.
Yu-Qiao LU ; Yao LU ; Geng LI ; Tang-You MAO ; Ji-Hua GUO ; Yong ZHU ; Xue WANG ; Xiao-Xiao ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1994-2000
In recent years, the reform of the registration, evaluation, and approval system for traditional Chinese medicine(TCM) has been promoted at the national level, with establishment of an evaluation evidence system for TCM registration that combines TCM theory, human use experience, and clinical trials(known as the "three-combined" evaluation evidence system). This system, which aligns with the characteristics of TCM clinical practice and the laws of TCM research and development, recognizes the unique value of human use experience in medicine and returns to the essence of medicine as an applied science, thus receiving widespread recognition from both academia and industry. However, it meanwhile poses new and higher challenges. This article delves into the value and challenges faced by the "three-combined" evaluation evidence system from three perspectives: registration management, medical institutions, and the TCM industry. Furthermore, it discusses how the China Association of Chinese Medicine, leveraging its academic platform advantages and leading roles, has made exploratory and practical efforts to facilitate the research and development of new TCM drugs and the implementation of the "three-combined" evaluation evidence system.
Drugs, Chinese Herbal/standards*
;
Humans
;
Medicine, Chinese Traditional/standards*
;
China
;
Drug Development
6.Scientific characterization of medicinal amber: evidence from geological and archaeological studies.
Qi LIU ; Qing-Hui LI ; Di-Ying HUANG ; Yan LI ; Pan XIAO ; Ji-Qing BAI ; Hua-Sheng PENG ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(11):2905-2914
Amber and subfossil resins are subjects of interdisciplinary research across multiple fields. However, due to their diverse origins and complex compositions, different disciplines vary in their definitions and functional interpretations. In traditional Chinese medicine(TCM), amber has been utilized as a medicinal material since ancient time, with extensive historical documentation. However, its classification, provenance, and nomenclature remain ambiguous, and authentic medicinal amber artifacts are exceedingly rare. This study employed Fourier-transform infrared spectroscopy(FTIR) to characterize amber and subfossil resins from various geological sources and commercially "medicinal amber". Additionally, historical literature and market surveys were analyzed to explore their provenance, composition, and functional attributes. The results indicate that amber and subfossil resins from different sources and with different compositions exhibit distinct fingerprint characteristics in the FTIR spectral range of 1 800-700 cm~(-1). "Medicinal amber" available in the market primarily consists of subfossil or modern resins, significantly differing in composition and structure from geological amber. This study highlights the importance of interdisciplinary research on amber identification and resource management. It is essential to establish a systematic database of amber and subfossil resin characteristics and integrate modern analytical techniques to enhance research on their composition, pharmacological mechanisms, and potential therapeutic effects, thereby promoting the standardized utilization of amber resources and advancing the modernization of TCM.
Amber/history*
;
Archaeology
;
Spectroscopy, Fourier Transform Infrared
;
Medicine, Chinese Traditional
7.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
8.Erratum: Author Correction: Targeting of AUF1 to vascular endothelial cells as a novel anti-aging therapy.
Jian HE ; Ya-Feng JIANG ; Liu LIANG ; Du-Jin WANG ; Wen-Xin WEI ; Pan-Pan JI ; Yao-Chan HUANG ; Hui SONG ; Xiao-Ling LU ; Yong-Xiang ZHAO
Journal of Geriatric Cardiology 2025;22(9):834-834
[This corrects the article DOI: 10.11909/j.issn.1671-5411.2017.08.005.].
9.Research Progress of Vagal Nerve Regulation Mechanism in Acupuncture Treatment of Atrial Fibrillation.
Lu-Lu CAO ; Hui-Rong LIU ; Ya-Jie JI ; Yin-Tao ZHANG ; Bing-Quan WANG ; Xiao-Hong XUE ; Pei WANG ; Zhi-Hui LUO ; Huan-Gan WU
Chinese journal of integrative medicine 2025;31(3):281-288
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. It has a high prevalence and poor prognosis. The application of antiarrhythmic drugs and even surgery cannot completely treat the disease, and there are many sequelae. AF can be classified into the category of "palpitation" in Chinese medicine according to its symptoms. Acupuncture has a significant effect on AF. The authors find that an important mechanism of acupuncture in AF treatment is to regulate the cardiac vagus nerve. Therefore, this article intends to review the distribution and function of vagus nerve in the heart, the application and the regulatroy effect for the treatment of AF.
Atrial Fibrillation/physiopathology*
;
Humans
;
Acupuncture Therapy
;
Vagus Nerve/physiology*
;
Animals
10.Single-cell transcriptomics identifies PDGFRA+ progenitors orchestrating angiogenesis and periodontal tissue regeneration.
Jianing LIU ; Junxi HE ; Ziqi ZHANG ; Lu LIU ; Yuan CAO ; Xiaohui ZHANG ; Xinyue CAI ; Xinyan LUO ; Xiao LEI ; Nan ZHANG ; Hao WANG ; Ji CHEN ; Peisheng LIU ; Jiongyi TIAN ; Jiexi LIU ; Yuru GAO ; Haokun XU ; Chao MA ; Shengfeng BAI ; Yubohan ZHANG ; Yan JIN ; Chenxi ZHENG ; Bingdong SUI ; Fang JIN
International Journal of Oral Science 2025;17(1):56-56
Periodontal bone defects, primarily caused by periodontitis, are highly prevalent in clinical settings and manifest as bone fenestration, dehiscence, or attachment loss, presenting a significant challenge to oral health. In regenerative medicine, harnessing developmental principles for tissue repair offers promising therapeutic potential. Of particular interest is the condensation of progenitor cells, an essential event in organogenesis that has inspired clinically effective cell aggregation approaches in dental regeneration. However, the precise cellular coordination mechanisms during condensation and regeneration remain elusive. Here, taking the tooth as a model organ, we employed single-cell RNA sequencing to dissect the cellular composition and heterogeneity of human dental follicle and dental papilla, revealing a distinct Platelet-derived growth factor receptor alpha (PDGFRA) mesenchymal stem/stromal cell (MSC) population with remarkable odontogenic potential. Interestingly, a reciprocal paracrine interaction between PDGFRA+ dental follicle stem cells (DFSCs) and CD31+ Endomucin+ endothelial cells (ECs) was mediated by Vascular endothelial growth factor A (VEGFA) and Platelet-derived growth factor subunit BB (PDGFBB). This crosstalk not only maintains the functionality of PDGFRA+ DFSCs but also drives specialized angiogenesis. In vivo periodontal bone regeneration experiments further reveal that communication between PDGFRA+ DFSC aggregates and recipient ECs is essential for effective angiogenic-osteogenic coupling and rapid tissue repair. Collectively, our results unravel the importance of MSC-EC crosstalk mediated by the VEGFA and PDGFBB-PDGFRA reciprocal signaling in orchestrating angiogenesis and osteogenesis. These findings not only establish a framework for deciphering and promoting periodontal bone regeneration in potential clinical applications but also offer insights for future therapeutic strategies in dental or broader regenerative medicine.
Receptor, Platelet-Derived Growth Factor alpha/metabolism*
;
Humans
;
Neovascularization, Physiologic/physiology*
;
Dental Sac/cytology*
;
Single-Cell Analysis
;
Transcriptome
;
Mesenchymal Stem Cells/metabolism*
;
Bone Regeneration
;
Animals
;
Dental Papilla/cytology*
;
Periodontium/physiology*
;
Stem Cells/metabolism*
;
Regeneration
;
Angiogenesis

Result Analysis
Print
Save
E-mail