1.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
2.Effects of Exercise Training on The Behaviors and HPA Axis in Autism Spectrum Disorder Rats Through The Gut Microbiota
Xue-Mei CHEN ; Yin-Hua LI ; Jiu-Gen ZHONG ; Zhao-Ming YANG ; Xiao-Hui HOU
Progress in Biochemistry and Biophysics 2025;52(6):1511-1528
ObjectiveThe study explores the influence of voluntary wheel running on the behavioral abnormalities and the activation state of the hypothalamic-pituitary-adrenal (HPA) axis in autism spectrum disorder (ASD) rats through gut microbiota. MethodsSD female rats were selected and administered either400 mg/kg of valproic acid (VPA) solution or an equivalent volume of saline via intraperitoneal injection on day 12.5 of pregnancy. The resulting offspring were divided into 2 groups: the ASD model group (PASD, n=35) and the normal control group (PCON, n=16). Behavioral assessments, including the three-chamber social test, open field test, and Morris water maze, were conducted on postnatal day 23. After behavioral testing, 8 rats from each group (PCON, PASD) were randomly selected for serum analysis using enzyme-linked immunosorbent assay (ELISA) to measure corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) concentration, to evaluate the functional state of the HPA axis in rats. On postnatal day 28, the remaining 8 rats in the PCON group were designated as the control group (CON, n=8), and the remaining 27 rats in the PASD group were randomly divided into 4 groups: ASD non-intervention group (ASD, n=6), ASD exercise group (ASDE, n=8), ASD fecal microbiota transplantation group (FMT, n=8), and ASD sham fecal microbiota transplantation group (sFMT, n=5). The rats in the ASD group and the CON group were kept under standard conditions, while the rats in the ASDE group performed 6 weeks of voluntary wheel running intervention starting on postnatal day 28. The rats in the FMT group were gavaged daily from postnatal day 42 with 1 ml/100 g fresh fecal suspension from ASDE rats which had undergone exercise for 2 weeks, 5 d per week, continuing for 4 weeks. The sFMT group received an equivalent volume of saline. After the interventions were completed, behavioral assessments and HPA axis markers were measured for all groups. ResultsBefore the intervention, the ASD model group exhibited significantly reduced social ability, social novelty preference, spontaneous activity, and exploratory interest, as well as impaired spatial learning, memory, and navigation abilities compared to the normal control group (P<0.05). Serum concentration of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) in the PASD group were significantly higher than those in the PCON group (P<0.05). Following 6 weeks of voluntary wheel running, the ASDE group showed significant improvements in social ability, social novelty preference, spontaneous activity, exploratory interest, spatial learning, memory, and navigation skills compared to the ASD group (P<0.05), with a significant decrease in serum CORT concentration (P<0.05), and a downward trend in CRH and ACTH concentration. After 4 weeks of fecal microbiota transplantation in the exercise group, the FMT group showed marked improvements in social ability, social novelty preference, spontaneous activity, exploratory interest, as well as spatial learning, memory, and navigation abilities compared to both the ASD and sFMT groups (P<0.05). In addition, serum ACTH and CORT concentration were significantly reduced (P<0.05), and CRH concentration also showed a decreasing trend. ConclusionExercise may improve ASD-related behaviors by suppressing the activation of the HPA axis, with the gut microbiota likely playing a crucial role in this process.
3.Mitochondial-located miRNAs in The Regulation of mtDNA Expression
Peng-Xiao WANG ; Le-Rong CHEN ; Zhen WANG ; Jian-Gang LONG ; Yun-Hua PENG
Progress in Biochemistry and Biophysics 2025;52(7):1649-1660
Mitochondria, functioning not only as the central hub of cellular energy metabolism but also as semi-autonomous organelles, orchestrate cellular fate decisions through their endogenous mitochondrial DNA (mtDNA), which encodes core components of the electron transport chain. Emerging research has identified microRNAs localized within mitochondria, termed mitochondria-located microRNAs (mitomiRs). Recent studies have revealed that mitomiRs are transcribed from nuclear DNA (nDNA), processed and matured in the cytoplasm, and subsequently transported into mitochondria. mitomiRs regulate mtDNA through diverse mechanisms, including modulation of mtDNA expression at the translational level and direct binding to mtDNA to influence transcription. Aberrant expression of mitomiRs leads to mitochondrial dysfunction and contributes to the pathogenesis of metabolic diseases. Restoring mitomiR expression to physiological levels using mitomiRs mimics or inhibitors has been shown to improve mitochondrial function and alleviate related diseases. Consequently, the regulatory mechanisms of mitomiRs have become a major focus in mitochondrial research. Given that mitomiRs are located in mitochondria, targeted delivery strategies designed for mtDNA can be adapted for the delivery of mitomiRs mimics or inhibitors. However, numerous intracellular and extracellular barriers remain, highlighting the need for more precise and efficient delivery systems in the future. The regulation of mtDNA expression mediated by mitomiRs not only expands our understanding of miRNA functions in post-transcriptional gene regulation but also provides promising molecular targets for the treatment of mitochondrial-related diseases. This review systematically summarizes recent research progress on mitomiRs in regulating mtDNA expression and discusses the underlying mechanisms of mitomiRs-mtDNA interactions. Additionally, it provides new perspectives on precision therapeutic strategies, with a particular emphasis on mitomiRs-based regulation of mitochondrial function in mitochondrial-related diseases.
4.6-Week Caloric Restriction Improves Lipopolysaccharide-induced Septic Cardiomyopathy by Modulating SIRT3
Ming-Chen ZHANG ; Hui ZHANG ; Ting-Ting LI ; Ming-Hua CHEN ; Xiao-Wen WANG ; Zhong-Guang SUN
Progress in Biochemistry and Biophysics 2025;52(7):1878-1889
ObjectiveThe aim of this study was to investigate the prophylactic effects of caloric restriction (CR) on lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM) and to elucidate the mechanisms underlying the cardioprotective actions of CR. This research aims to provide innovative strategies and theoretical support for the prevention of SCM. MethodsA total of forty-eight 8-week-old male C57BL/6 mice, weighing between 20-25 g, were randomly assigned to 4 distinct groups, each consisting of 12 mice. The groups were designated as follows: CON (control), LPS, CR, and CR+LPS. Prior to the initiation of the CR protocol, the CR and CR+LPS groups underwent a 2-week acclimatization period during which individual food consumption was measured. The initial week of CR intervention was set at 80% of the baseline intake, followed by a reduction to 60% for the subsequent 5 weeks. After 6-week CR intervention, all 4 groups received an intraperitoneal injection of either normal saline or LPS (10 mg/kg). Twelve hours post-injection, heart function was assessed, and subsequently, heart and blood samples were collected. Serum inflammatory markers were quantified using enzyme-linked immunosorbent assay (ELISA). The serum myocardial enzyme spectrum was analyzed using an automated biochemical instrument. Myocardial tissue sections underwent hematoxylin and eosin (HE) staining and immunofluorescence (IF) staining. Western blot analysis was used to detect the expression of protein in myocardial tissue, including inflammatory markers (TNF-α, IL-9, IL-18), oxidative stress markers (iNOS, SOD2), pro-apoptotic markers (Bax/Bcl-2 ratio, CASP3), and SIRT3/SIRT6. ResultsTwelve hours after LPS injection, there was a significant decrease in ejection fraction (EF) and fractional shortening (FS) ratios, along with a notable increase in left ventricular end-systolic diameter (LVESD). Morphological and serum indicators (AST, LDH, CK, and CK-MB) indicated that LPS injection could induce myocardial structural disorders and myocardial injury. Furthermore, 6-week CR effectively prevented the myocardial injury. LPS injection also significantly increased the circulating inflammatory levels (IL-1β, TNF-α) in mice. IF and Western blot analyses revealed that LPS injection significantly up-regulating the expression of inflammatory-related proteins (TNF-α, IL-9, IL-18), oxidative stress-related proteins (iNOS, SOD2) and apoptotic proteins (Bax/Bcl-2 ratio, CASP3) in myocardial tissue. 6-week CR intervention significantly reduced circulating inflammatory levels and downregulated the expression of inflammatory, oxidative stress-related proteins and pro-apoptotic level in myocardial tissue. Additionally, LPS injection significantly downregulated the expression of SIRT3 and SIRT6 proteins in myocardial tissue, and CR intervention could restore the expression of SIRT3 proteins. ConclusionA 6-week CR could prevent LPS-induced septic cardiomyopathy, including cardiac function decline, myocardial structural damage, inflammation, oxidative stress, and apoptosis. The mechanism may be associated with the regulation of SIRT3 expression in myocardial tissue.
5.The Role of AMPK in Diabetic Cardiomyopathy and Related Intervention Strategies
Fang-Lian LIAO ; Xiao-Feng CHEN ; Han-Yi XIANG ; Zhi XIA ; Hua-Yu SHANG
Progress in Biochemistry and Biophysics 2025;52(10):2550-2567
Diabetic cardiomyopathy is a distinct form of cardiomyopathy that can lead to heart failure, arrhythmias, cardiogenic shock, and sudden death. It has become a major cause of mortality in diabetic patients. The pathogenesis of diabetic cardiomyopathy is complex, involving increased oxidative stress, activation of inflammatory responses, disturbances in glucose and lipid metabolism, accumulation of advanced glycation end products (AGEs), abnormal autophagy and apoptosis, insulin resistance, and impaired intracellular Ca2+ homeostasis. Recent studies have shown that adenosine monophosphate-activated protein kinase (AMPK) plays a crucial protective role by lowering blood glucose levels, promoting lipolysis, inhibiting lipid synthesis, and exerting antioxidant, anti-inflammatory, anti-apoptotic, and anti-ferroptotic effects. It also enhances autophagy, thereby alleviating myocardial injury under hyperglycemic conditions. Consequently, AMPK is considered a key protective factor in diabetic cardiomyopathy. As part of diabetes prevention and treatment strategies, both pharmacological and exercise interventions have been shown to mitigate diabetic cardiomyopathy by modulating the AMPK signaling pathway. However, the precise regulatory mechanisms, optimal intervention strategies, and clinical translation require further investigation. This review summarizes the role of AMPK in the prevention and treatment of diabetic cardiomyopathy through drug and/or exercise interventions, aiming to provide a reference for the development and application of AMPK-targeted therapies. First, several classical AMPK activators (e.g., AICAR, A-769662, O-304, and metformin) have been shown to enhance autophagy and glucose uptake while inhibiting oxidative stress and inflammatory responses by increasing the phosphorylation of AMPK and its downstream target, mammalian target of rapamycin (mTOR), and/or by upregulating the gene expression of glucose transporters GLUT1 and GLUT4. Second, many antidiabetic agents (e.g., teneligliptin, liraglutide, exenatide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin) can promote autophagy, reverse excessive apoptosis and autophagy, and alleviate oxidative stress and inflammation by enhancing AMPK phosphorylation and its downstream targets, such as mTOR, or by increasing the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor‑α (PPAR‑α). Third, certain anti-anginal (e.g., trimetazidine, nicorandil), anti-asthmatic (e.g., farrerol), antibacterial (e.g., sodium houttuyfonate), and antibiotic (e.g., minocycline) agents have been shown to promote autophagy/mitophagy, mitochondrial biogenesis, and inhibit oxidative stress and lipid accumulation via AMPK phosphorylation and its downstream targets such as protein kinase B (PKB/AKT) and/or PPAR‑α. Fourth, natural compounds (e.g., dihydromyricetin, quercetin, resveratrol, berberine, platycodin D, asiaticoside, cinnamaldehyde, and icariin) can upregulate AMPK phosphorylation and downstream targets such as AKT, mTOR, and/or the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting anti-inflammatory, anti-apoptotic, anti-pyroptotic, antioxidant, and pro-autophagic effects. Fifth, moderate exercise (e.g., continuous or intermittent aerobic exercise, aerobic combined with resistance training, or high-intensity interval training) can activate AMPK and its downstream targets (e.g., acetyl-CoA carboxylase (ACC), GLUT4, PPARγ coactivator-1α (PGC-1α), PPAR-α, and forkhead box protein O3 (FOXO3)) to promote fatty acid oxidation and glucose uptake, and to inhibit oxidative stress and excessive mitochondrial fission. Finally, the combination of liraglutide and aerobic interval training has been shown to activate the AMPK/FOXO1 pathway, thereby reducing excessive myocardial fatty acid uptake and oxidation. This combination therapy offers superior improvement in cardiac dysfunction, myocardial hypertrophy, and fibrosis in diabetic conditions compared to liraglutide or exercise alone.
6.Analysis on clinical efficacy of ureteroscope-assisted laparoscopic ureteroplasty at lying and running position of healthy side in the treatment of postoperative ureteral stenosis
Hua CHEN ; Tairong LIU ; Qiuhua ZHU ; Leming SONG ; Qiliang ZHAI ; Jiaqi GE ; Jiansheng XIAO
Chinese Journal of Urology 2024;45(1):29-33
Objective:To explore the safety and efficacy of ureteroscopy-assisted laparoscopic ureteroplasty in the healthy side-lying running position for the treatment of ureteral stenosis after pelvic surgery.Methods:The data of 92 patients with ureteral stenosis after surgery admitted to Ganzhou People’s Hospital from June 2017 to February 2023 were retrospectively analysed. There were 31 male patients and 61 female patients, with an average age of (46.4±23.3) years. Of the 92 patients, 53 patients had previously undergone stone fragmentation or stone retrieval surgery for urinary system stones, 35 patients had undergone gynecologic laparoscopic surgery for gynecologic diseases, 2 patients had previous intestinal surgery, and 2 patients had undergone laparoscopic ureteral reconstruction surgery. The mean preoperative serum creatinine was (120.33±16.52) μmol/L, the mean blood urea nitrogen was (14.28 ± 2.47) mmol/L, and the mean renal pelvis dilation was (3.23±2.47) cm. All patients were placed in healthy side-lying running position with general anesthesia. The patient's lower limbs were in the oblique supine position, and the angle of the lower limbs was 60-80°. By using a transabdominal approach, the narrow section of the ureter was mobilized and excised under the guidance of ureteroscopy. The posterior wall of the ureter was sutured and a zebra guidewire was placed into the renal pelvis. An F7 double-J stent was then retrogradely advanced over the guidewire. Then the anterior wall of the ureter was anastomosed to complete the surgery. The operation time, average length of hospital stay, perioperative complications, preoperative and postoperative pyelectasis and renal function changes were recorded, and the clinical efficacy were evaluated by comparative analysis.Results:Of the 92 patients, 90 patients were successfully treated with ureterovesical anastomosis. Two patients underwent ureterovesical reimplantation because of the low position and heavy adhesion of the stenosis segment. There were no cases of conversion to open surgery or intraoperative death. The mean surgery duration was (121.52±22.35) min, the mean drainage tube indwelling time was (3.16±1.23) d, and the mean hospital stay was (6.46±2.37) d. A patient with moderate hydronephrosis exhibited postoperative urinary leakage. Two patients developed symptoms of hematuria after ambulation. Following treatment with bed rest, adequate drainage, and appropriate hemostatic medication, all patients recovered smoothly and were discharged. The double J tube was removed 3 months after operation, and the CT reexamination after extubation showed that the degree of pyelectasis was (2.52±1.54) cm, the average serum creatinine was (89.64±15.21) μmol/L, and urea nitrogen was (9.42±1.36) mmol/L, which was all significantly different from that before operation ( P<0.05). The patients were followed up for 6 to 12 months, and there was no ureteral restenosis. Conclusions:Ureteroscopic-assisted laparoscopic ureteroplasty in the healthy side-lying running position is a safe and effective surgical method for the treatment of short segment (narrow segment <3 cm) ureteral cicatrix stenosis after surgery. And this surgical method has the advantages of accurate positioning of the narrow segment, safe and convenient ureteral free, exact ureteral anastomosis, and easy placement of double J tube.
7.Neoflavonoids from Dalbergia cochinchinensis and their anti-hypoxia/reoxygenation injury activities on H9c2 myocardial cells
Jia-Hui REN ; Qi-Wan ZHENG ; Xiao-Wei MENG ; Yan PANG ; Lan-Ying CHEN ; Rong-Hua LIU
Chinese Traditional Patent Medicine 2024;46(1):126-132
AIM To study the neoflavonoids from Dalbergia cochinchinensis Pierre ex Laness and their anti-hypoxia/reoxygenation injury activities on H9c2 myocardial cells.METHODS The 70%ethanol extract from D.cochinchinensis was isolated and purified by silica gel,Sephadex LH-20 and reverse-preparative HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.The CCK-8 method was used to detect their activities on H9c2 cells and protective effects on hypoxia-reoxygenation injury of H9c2 cells,and their structure-activity relationship was analyzed.RESULTS Twelve compounds were isolated and identified as latifolin(1),5-O-methyllatifolin(2),mimosifoliol(3),5-O-methydalbergiphenol(4),dalbergiphenol(5),cearoin(6),2,4-dihydroxy-5-methoxy-benzophenone(7),2-hydroxy-4,5-dimethoxybenzophenone(8),melannoin(9),2,2′,5-trihydroxy-4-methoxybenzophenone(10),dalbergin(11),4-methoxydalbergione(12).The dalbergiphenols and dalbergins had little toxicity to H9c2 cells,and dalbergiphenols had strong activity against hypoxia-reoxygenation injury of H9c2 cells.CONCLUSION Compound 8 is a new natural product.Compounds 4,9 are isolated from this plant for the first time.Dalbergiphenols may be the main neoflavonoids against hypoxia-reoxygenation injury of H9c2 cells.
8.Clinical Efficacy of Fuzheng Huaji Longbi Decoction in Treating Benign Prostatic Hyperplasia with Syndrome of Healthy Qi Deficiency and Blood Stasis
Ninghua LI ; Zulong WANG ; Chenming ZHANG ; Xiao LI ; Rubing CHEN ; Qi ZHANG ; Zhong HUA
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):77-82
ObjectiveTo explore the clinical efficacy and safety of Fuzheng Huaji Longbi decoction in treating benign prostatic hyperplasia (BPH) in the patients with the syndrome of healthy Qi deficiency and blood stasis. MethodA total of 94 BPH patients were randomized into control and observation groups, with 47 patients in each group. The control group was treated with doxazosin mesylate sustained-release tablets, and the observation group with Fuzheng Huaji Longbi decoction on the basis of the therapy in the control group. After eight weeks, the international prostate symptom score (IPSS), quality of life (QOL) score, residual urine volume (RUV), maximum urinary flow rate (Qmax), TCM syndrome score, TCM symptom score, electrocardiogram, and liver and kidney function were determined to evaluate the clinical efficacy and safety of the two groups. ResultAfter 8 weeks of treatment, the total response rate in the control group was 63.64% (28/44), which was lower than that (84.44%, 38/45) in the observation group (χ2=5.026, P<0.05). The clinical efficacy in the observation group was higher than that in the control group (Z=-2.17, P=0.030). The treatment in both groups decreased the IPSS, QOL score, RUV, and TCM syndrome scores and increased the Qmax (P<0.05). Moreover, the observation group had lower IPSS, QOL score, RUV, and TCM syndrome score (P<0.05) and higher Qmax than the control group after treatment (P<0.05). The treatment in the observation group decreased all the TCM symptom scores (P<0.05), while that in the control group only decreased the frequency of urination at night and the scores of dysuria, weak urine stream, and post-urinary drainage (P<0.05). After treatment, the observation group had lower frequency of urination at night and lower scores of mental fatigue, cold limbs, lower abdominal discomfort, and loose stool than the control group (P<0.05). No adverse events associated with the administration of Fuzheng Huaji Longbi decoction were observed during the treatment period. ConclusionFuzheng Huaji Longbi decoction is effective in treating BPH in the patients with the syndrome of healthy qi deficiency and blood stasis. It can relieve the clinical symptoms and improve the quality of life, being a safe and reliable choice for clinical application.
9.Identification, expression and protein interaction analysis of Aux/IAA and ARF gene family in Senna tora L.
Zhao FENG ; Shi-peng LIU ; Rui-hua LÜ ; Rui-hua LÜ ; Xiao-chen HU ; Ming-ying ZHANG ; Ren-jun MAO ; Gang ZHANG
Acta Pharmaceutica Sinica 2024;59(3):751-763
The early response of plant auxin gene family
10.Research progress of IDO1-mediated tryptophan metabolism in sepsis
Xiao-di ZHAO ; Cheng-yan MA ; Hua-qing CUI ; Yu-chen WANG ; Xiao-guang CHEN ; Sen ZHANG
Acta Pharmaceutica Sinica 2024;59(2):289-297
Sepsis is a condition characterized by organ dysfunction resulting from the systemic inflammatory response triggered by an infection. Excessive inflammation and immunosuppression are intertwined, and severe cases may even develop into multiple organ failure. Studies have shown that indoleamine 2,3-dioxygenase 1-mediated tryptophan metabolism is involved in the occurrence and development of sepsis, and elevated plasma kynurenine levels and Kyn/Trp ratios are early indicators of sepsis development. In this paper, we provide a comprehensive summary of the role of IDO1 in the acute inflammatory phase of sepsis, late immunosuppression, and organ damage. This includes its regulation of inflammatory state, immune cell function, blood pressure, and other aspects. Additionally, we analyze preclinical studies on targeted IDO1 drugs. An in-depth understanding and study of IDO may help to understand the pathogenesis and clinical significance of sepsis and multiple organ damage from a new perspective and provide new research ideas for exploring its prevention and treatment methods.

Result Analysis
Print
Save
E-mail