1.Hepatocyte Nuclear Factor 4α Transcriptionally Activates TM4SF5 Through The DR1 Motif
Yi-Ming GUO ; Xiao-Fei ZHANG ; Han FENG ; Li ZHENG
Progress in Biochemistry and Biophysics 2025;52(5):1241-1251
ObjectiveHepatocyte nuclear factor 4-alpha (HNF4A) is a critical transcription factor in the liver and pancreas. Dysfunctions of HNF4A lead to maturity onset diabetes of the young 1 (MODY1). Notably, MODY1 patients with HNF4A pathogenic mutations exhibit decreased responses to arginine and reduced plasma triglyceride levels, but the mechanisms remain unclear. This study aims to investigate the potential target genes transcriptionally regulated by HNF4A and explore its role in these metabolic pathways. MethodsA stable 293T cell line expressing the HNF1A reporter was overexpressed with HNF4A. RNA sequencing (RNA-seq) was performed to analyze transcriptional differences. Transcription factor binding site prediction was then conducted to identify HNF4A binding motifs in the promoter regions of relevant target genes. ResultsRNA-seq results revealed a significant upregulation of transmembrane 4 L six family member 5 (TM4SF5) mRNA in HNF4A-overexpressing cells. Transcription factor binding predictions suggested the presence of five potential HNF4A binding motifs in the TM4SF5 promoter. Finally, we confirmed that the DR1 site in the -57 to -48 region of the TM4SF5 promoter is the key binding motif for HNF4A. ConclusionThis study identified TM4SF5 as a target gene of HNF4A and determined the key binding motif involved in its regulation. Given the role of TM4SF5 as an arginine sensor in mTOR signaling activation and triglyceride secretion, which closely aligns with phenotypes observed in MODY1 patients, our findings provide novel insights into the possible mechanisms by which HNF4A regulates triglyceride secretion in the liver and arginine-stimulated insulin secretion in the pancreas.
2.SAMSN1 causes sepsis immunosuppression by inducing macrophages to express coinhibitory molecules that cause T-cell exhaustion via KEAP1-NRF2 signaling.
Yao LI ; Tingting LI ; Fei XIAO ; Lijun WANG ; Xuelian LIAO ; Wei ZHANG ; Yan KANG
Chinese Medical Journal 2025;138(13):1607-1620
BACKGROUND:
Immunosuppression is closely related to the pathogenesis of sepsis, but the underlying mechanisms have not yet been fully elucidated. In this study, we aimed to examine the role of the Sterile Alpha Motif, Src Homology 3 domain and nuclear localization signal 1 (SAMSN1) in sepsis and elucidate its potential molecular mechanism in sepsis induced immunosuppression.
METHODS:
RNA sequencing databases were used to validate SAMSN1 expression in sepsis. The impact of SAMSN1 on sepsis was verified using gene knockout mice. Flow cytometry was employed to delineate how SAMSN1 affects immunity in sepsis, focusing on immune cell types and T cell functions. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing in RAW264.7 macrophages enabled interrogation of SAMSN1 's regulatory effects on essential macrophage functions, including cell proliferation and phagocytic capacity. The mechanism of SAMSN1 in the interaction between macrophages and T cells was investigated using the RAW264.7 cell line and primary cell lines.
RESULTS:
SAMSN1 expression was significantly increased in patients with sepsis and was positively correlated with sepsis mortality. Genetic deletion of Samsn1 in murine sepsis model improved T cell survival, elevated T cell cytolytic activity, and activated T cell signaling transduction. Concurrently, Samsn1 knockout augmented macrophage proliferation capacity and phagocytic efficiency. In macrophage, SAMSN1 binds to Kelch-like epichlorohydrin-associated protein 1 (KEAP1), causing nuclear factor erythroid 2-related factor 2 (NRF2) to dissociate from the KEAP1-NRF2 complex and translocate into the nucleus. This promotes the transcription of the coinhibitory molecules CD48/CD86/carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1), which bind to their corresponding receptors natural killer cell receptor 2B4/CD152/T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) on the surface of T cells, inducing T-cell exhaustion.
CONCLUSIONS
SAMSN1 deletion augmented adaptive T cell immunity and macrophage phagocytic-proliferative dual function. Furthermore, it mediates the KEAP1-NRF2 axis, which affects the expression of coinhibitory molecules on macrophages, leading to T-cell exhaustion. This novel immunosuppression mechanism potentially provides a candidate molecular target for sepsis immunotherapy.
Animals
;
NF-E2-Related Factor 2/metabolism*
;
Mice
;
Macrophages/immunology*
;
Sepsis/metabolism*
;
Kelch-Like ECH-Associated Protein 1/genetics*
;
T-Lymphocytes/immunology*
;
Humans
;
Signal Transduction/physiology*
;
RAW 264.7 Cells
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Male
;
Flow Cytometry
;
T-Cell Exhaustion
3.Comparison on odor components before and after processing of Cervi Cornu Pantotrichum based on electronic nose, HS-GC-MS, and odor activity value.
Xiao-Yu YAO ; Ke SHEN ; Di WU ; Xiao-Fei SUN ; Chun-Qin MAO ; Li FU ; Xiao-Yan WANG ; Hui XIE ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(2):421-431
Processing for deodorization is widely used in the production of animal-derived Chinese medicinal materials. In this study, Heracles Neo ultra-fast gas-phase electronic nose combined with chemometrics was employed to analyze the overall odor difference of Cervi Cornu Pantotrichum(focusing on that derived from Cervus nippon Temminck in this study) before and after processing. The results showed that the electronic nose effectively distinguished between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. HS-GC-MS was used to identify and quantify the volatile components in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum, and 35 and 37 volatile components were detected in the medicinal materials and decoction pieces, respectively. The medicinal materials and decoction pieces contained 28 common volatile components contributing to the odor of Cervi Cornu Pantotrichum. The odor activity value(OAV) of each volatile component was calculated based on the olfactory threshold and relative content. The results showed that there were 17 key odor substances such as isovaleraldehyde, 2-methylbutanal, isobutyraldehyde, hexanal, and methanethiol in the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. All of them had bad odor and were the main source of the odor of Cervi Cornu Pantotrichum. The results of principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) showed that there were significant differences in volatile components between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. Based on the thresholds of P<0.05 and Variable Importance in Projection(VIP)>1, 21 differential volatile odor components were screened out. Among them, isopentanol, isovaleraldehyde, 2-methylbutanal, n-nonanal, and dimethylamine were the key differential odor compounds between the medicinal materials and decoction pieces of Cervi Cornu Pantotrichum. The odor compounds and their relative content reduced, and some flavor substances such as esters were produced after processing with wine, which was the main reason for the reduction of the odor after processing of Cervi Cornu Pantotrichum.
Odorants/analysis*
;
Electronic Nose
;
Gas Chromatography-Mass Spectrometry/methods*
;
Animals
;
Volatile Organic Compounds/analysis*
;
Deer
;
Drugs, Chinese Herbal/chemistry*
4.Effect of Duhuo Jisheng Decoction on knee osteoarthritis model rabbits through regulation of cell pyroptosis mediated by PI3K/Akt/mTOR signaling pathway.
Lin-Qin HE ; Peng-Fei LI ; Xiao-Dong LI ; Qi-Peng CHEN ; Zong-Han TANG ; Yu-Xin SONG ; Han-Bing SONG
China Journal of Chinese Materia Medica 2025;50(1):187-197
This study aimed to investigate the underlying mechanisms of Duhuo Jisheng Decoction(DJD) in the prevention and treatment of knee osteoarthritis(KOA). Forty SPF New Zealand rabbits were randomly divided using SPSS 26.0 software into five groups: blank group, model group, low-dose DJD group, high-dose DJD group, and high-dose DJD+phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathway activator group(high-dose DJD+740Y-P group), with eight rabbits in each group. Except for the blank group, the KOA model was established in the other groups using papain injection into the knee joint cavity combined with forced flexion of the knee joint. The day after modeling, the blank group and model group were given normal saline at 10 mL·kg~(-1) by gavage, the low-dose DJD group received DJD at 8.8 g·kg~(-1) by gavage, the high-dose DJD group received DJD at 35.2 g·kg~(-1) by gavage, and the high-dose DJD+740Y-P group received DJD at 35.2 g·kg~(-1) by gavage along with 740Y-P at 0.15 μmoL·kg~(-1) injected via the auricular vein. All groups received treatment continuously for four weeks. After modeling and intervention, behavioral observations were performed for all groups, and after the intervention, imaging assessments of the knee joints were conducted. Cartilage from the knee joints was collected, and gross morphological changes were observed. Pathological changes in cartilage tissue were examined using hematoxylin-eosin(HE) staining. The results of these observations were quantitatively evaluated using the Lequesne MG score, Kellgren-Lawrence(K-L) grading, Pelletier score, and Mankin score. ELISA was used to measure the levels of interleukin-1β(IL-1β), interleukin-18(IL-18), and matrix metalloproteinase 13(MMP13) in cartilage tissue. Real-time RT-PCR was used to detect the mRNA expression levels of PI3K, Akt, mTOR, Nod-like receptor protein 3(NLRP3), cysteine protease 1(caspase-1), and gasdermin D(GSDMD) in cartilage tissue. Western blot was employed to measure the protein expression levels of PI3K, Akt, mTOR, NLRP3, caspase-1, and GSDMD. The results showed that compared with the blank group, the model group exhibited significant knee joint degeneration, increased Lequesne MG score, K-L grading, Pelletier score, and Mankin score, elevated levels of IL-1β, IL-18, and MMP13 in cartilage tissue, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression levels, and elevated protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. Compared with the model group, these indicators were reversed in both the low-dose and high-dose DJD groups, with the high-dose group showing greater decline degree than the low-dose DJD group. However, compared with the high-dose DJD group, the improvements in knee joint degeneration were less pronounced in the high-dose DJD+740Y-P group, with increased Lequesne MG score, K-L grading, Pelletier score, Mankin score, elevated levels of IL-1β, IL-18, and MMP13, activation of PI3K, Akt, and mTOR phosphorylation along with increased mRNA expression, and increased protein and mRNA expression levels of NLRP3, caspase-1, and GSDMD. In conclusion, DJD is effective and safe in the treatment of KOA, and its mechanism may be related to the inhibition of PI3K/Akt/mTOR signaling pathway-mediated pyroptosis in cartilage tissue, thereby improving knee joint bone structure, reducing the inflammatory response, and preventing cartilage matrix degradation.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rabbits
;
TOR Serine-Threonine Kinases/genetics*
;
Osteoarthritis, Knee/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Signal Transduction/drug effects*
;
Male
;
Disease Models, Animal
;
Pyroptosis/drug effects*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Humans
;
Female
5.Mineralogical studies on iron-containing mineral medicines, Haematitum and Limonitum.
Min LU ; Xiao-Fei WANG ; Cheng-Cheng WANG ; Jing-Xu CHEN ; Hang-Jie ZHU ; Juan LI ; Yan CAO
China Journal of Chinese Materia Medica 2025;50(5):1179-1186
Haematitum and Limonitum are two iron-containing mineral medicines included in the 2020 edition of the Chinese Pharmacopoeia. They have similar main components and major differences in their property, flavor, channel tropism, and clinical uses. In this study, we investigated the surface properties, mineral composition, mineral dissociation, elemental composition, and iron state of Haematitum and Limonitum to explore their mineralogical differences. Scanning electron microscopy(SEM), specific surface and porosity analyzer, X-ray diffractometer(XRD), X-ray photoelectron spectrometer(XPS), and advanced mineral identification and characterization system(AMICS) were used to analyze the mineralogy of Haematitum and Limonitum. The results showed that Haematitum had an angular surface with granular attachments and a specific surface area of 17.04 m~2·g~(-1). In comparison, Limonitum had a smooth and flat surface with a bundled acicular crystal structure and a specific surface area of 46.29 m~2·g~(-1). Haematitum consists of 31 detectable minerals containing 18 elements, with the major element, iron(44.5% Fe~(2+) and 55.5% Fe~(3+)) distributed in 17 minerals, including hematite, iron oxide, knebelite, siderite, and magnesioferrite. Limonitum consists of 32 detectable minerals containing 17 elements, with the major element, iron(14.5% Fe~(2+) and 85.5% Fe~(3+)) distributed in 19 minerals, including limonite, iron oxide, chlorite, and knebelite. In summary, the elemental composition of Haematitum and Limonitum does not differ greatly, but there are large differences in the mineral composition and iron state. The large specific surface area and strong adsorption capacity of Limonitum may be one of the mechanisms of its anti-diarrheal action. The Fe_2O_3 and illite contained in Haematitum and Limonitum may be the key substances for their hemostasis effects. The mineralogical differences are expected to provide a reference for explaining the scientific connotation of mineral medicine and laying a material foundation for studying its mechanism of action.
Iron/analysis*
;
Minerals/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
X-Ray Diffraction
;
Microscopy, Electron, Scanning
;
Photoelectron Spectroscopy
6.Research on software development and smart manufacturing platform incorporating near-infrared spectroscopy for measuring traditional Chinese medicine manufacturing process.
Yan-Fei WU ; Hui XU ; Kai-Yi WANG ; Hui-Min FENG ; Xiao-Yi LIU ; Nan LI ; Zhi-Jian ZHONG ; Ze-Xiu ZHANG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(9):2324-2333
Process analytical technology(PAT) is a key means for digital transformation and upgrading of the traditional Chinese medicine(TCM) manufacturing process, serving as an important guarantee for consistent and controllable TCM product quality. Near-infrared(NIR) spectroscopy has become the core technology for measuring the TCM manufacturing process. By incorporating NIR spectroscopy into PAT and starting from the construction of a smart platform for the TCM manufacturing process, this paper systematically described the development history and innovative application of the combination of NIR spectroscopy with chemometrics in measuring the TCM manufacturing process by the research team over the past two decades. Additionally, it explored the application of a validation method based on accuracy profile(AP) in the practice of NIR spectroscopy. Furthermore, the software development progress driven by NIR spectroscopy supported by modeling technology was analyzed, and the prospect of integrating NIR spectroscopy in smart factory control platforms was exemplified with the construction practices of related platforms. By integrating with the smart platform, NIR spectroscopy could improve production efficiency and guarantee product quality. Finally, the prospect of the smart platform application in measuring the TCM manufacturing process was projected. It is believed that the software development for NIR spectroscopy and the smart manufacturing platform will provide strong technical support for TCM digitalization and industrialization.
Spectroscopy, Near-Infrared/methods*
;
Drugs, Chinese Herbal/analysis*
;
Software
;
Medicine, Chinese Traditional
;
Quality Control
7.Effects of total extract of Anthriscus sylvestris on immune inflammation and thrombosis in rats with pulmonary arterial hypertension based on TGF-β1/Smad3 signaling pathway.
Ya-Juan ZHENG ; Pei-Pei YUAN ; Zhen-Kai ZHANG ; Yan-Ling LIU ; Sai-Fei LI ; Yuan RUAN ; Yi CHEN ; Yang FU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(9):2472-2483
This study aimed to explore the effects and mechanisms of total extracts from Anthriscus sylvestris on pulmonary hypertension in rats. Sixty male SD rats were divided into normal(NC) group, model(M) group, positive drug sildenafil(Y) group, low-dose A. sylvestris(ES-L) group, medium-dose A. sylvestris(ES-M) group, and high-dose A. sylvestris(ES-H) group. On day 1, rats were intraperitoneally injected with monocrotaline(60 mg·kg~(-1)) to induce pulmonary hypertension, and the rat model was established on day 28. From days 15 to 28, intragastric administration of the respective treatments was performed. After modeling and treatment, small animal echocardiography was used to detect the right heart function of the rats. Arterial blood gas was measured using a blood gas analyzer. Hematoxylin and eosin(HE) staining and Masson staining were performed to observe cardiopulmonary pathological damage. Flow cytometry was used to detect apoptosis in the lung and myocardial tissues and reactive oxygen species(ROS) levels. Western blot was applied to detect the expression levels of transforming growth factor-β1(TGF-β1), phosphorylated mothers against decapentaplegic homolog 3(p-Smad3), Smad3, tissue plasminogen activator(t-PA), and plasminogen activator inhibitor-1(PAI-1) in lung tissue. A blood routine analyzer was used to measure inflammatory immune cell levels in the blood. Enzyme-linked immunosorbent assay(ELISA) was used to detect the expression levels of P-selectin and thromboxane A2(TXA2) in plasma. The results showed that, compared with the NC group, right heart hypertrophy index, right ventricular free wall thickness, right heart internal diameter, partial carbon dioxide pressure(PaCO_2), apoptosis in cardiopulmonary tissue, and ROS levels were significantly increased in the M group. In contrast, the ratio of pulmonary blood flow acceleration time(PAT)/ejection time(PET), right cardiac output, change rate of right ventricular systolic area, systolic displacement of the tricuspid ring, oxygen partial pressure(PaO_2), and blood oxygen saturation(SaO_2) were significantly decreased in the M group. After administration of the total extract of A. sylvestris, right heart function and blood gas levels were significantly improved, while apoptosis in cardiopulmonary tissue and ROS levels significantly decreased. Further testing revealed that the total extract of A. sylvestris significantly decreased the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and PAI-1 proteins in lung tissue, while increasing the expression of t-PA. Additionally, the extract reduced the levels of inflammatory cells such as leukocytes, lymphocytes, granulocytes, and monocytes in the blood, as well as the levels of P-selectin and TXA2 in plasma. Metabolomics results showed that the total extract of A. sylvestris significantly affected metabolic pathways, including arginine biosynthesis, tyrosine metabolism, and taurine and hypotaurine metabolism. In conclusion, the total extract of A. sylvestris may exert an anti-pulmonary hypertension effect by inhibiting the TGF-β1/Smad3 signaling pathway, thereby alleviating immune-inflammatory responses and thrombosis.
Animals
;
Male
;
Smad3 Protein/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Hypertension, Pulmonary/genetics*
;
Thrombosis/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Apoptosis/drug effects*
8.Research progress in pharmacological effects of puerarin.
Xiao-Wei MENG ; Feng-Mei GUO ; Qian-Qian WANG ; Jia-Rong LI ; Ni ZHANG ; Fei QU ; Rong-Hua LIU ; Wei-Feng ZHU
China Journal of Chinese Materia Medica 2025;50(11):2954-2968
Traditional Chinese medicine(TCM), a treasure of the Chinese nation, contains abundant chemical components and demonstrates unique pharmacological activities, showing important values in clinical applications. With profound connotations and broad application prospects, TCM urgently needs us to further explore and conduct systematic research. Puerarin is a small-molecule natural isoflavonoid carbon glycoside extracted from plants of Pueraria. It is also the main active ingredient of Puerariae Lobata Radix, a Chinese herbal medicine with both medicinal and edible values. Puerarin has a variety of pharmacological effects such as blood pressure-lowering, anti-atherosclerosis, anti-ischemia-reperfusion injury, antithrombotic, anti-tumor, anti-inflammatory, liver-protecting, nerve cell-protecting, and intestinal microbiota-regulating effects. It is also an active ingredient that has been widely studied. This article comprehensively reviews the research progress in the pharmacological effects and molecular mechanisms of puerarin over the years, aiming to provide references and theoretical support for the in-depth research and development as well as clinical application of puerarin.
Isoflavones/chemistry*
;
Humans
;
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Pueraria/chemistry*
9.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
10.Buyang Huanwu Decoction targets PPARG/SPP1/CD44 signaling pathway: mechanisms of lipid dysregulation and treatment in idiopathic pulmonary fibrosis.
Gang-Gang LI ; Xiao-Chuan PAN ; Fei WANG ; Quan-Yu DU
China Journal of Chinese Materia Medica 2025;50(14):3821-3834
Idiopathic pulmonary fibrosis(IPF) is a chronic progressive interstitial lung disease characterized by a complex pathogenesis and limited treatment options. Although studies have indicated that lipid metabolism dysregulation is associated with the progression of IPF, the core regulatory mechanisms remain unclear. By integrating RNA sequencing data from the GEO database, we identified four key genes related to lipid metabolism: peroxisome proliferator-activated receptor gamma(PPARG), secreted phosphoprotein 1(SPP1), caspase 3(CASP3), and platelet endothelial cell adhesion molecule 1(PECAM1). Further validation using single-cell RNA sequencing revealed the cell-specific expression patterns of these genes. The results found that PPARG was significantly downregulated in alveolar macrophages while SPP1 was significantly upregulated. Mechanistic studies indicated that PPARG negatively regulated SPP1 expression, and the interaction between SPP1 and cluster of differentiation 44(CD44) activated intercellular signaling pathways that promoted fibrosis. Through network pharmacology and molecular docking, it was predicted that the bioactive components of the traditional Chinese medicine formula, namely Buyang Huanwu Decoction may target PPARG to modulate lipid metabolism pathways. In a bleomycin-induced rat model with IPF, this paper randomly divided the rats into six groups(control, group, model group, pirfenidone group, and low, middle, and high-dose groups of Buyang Huanwu Decoction). The results demonstrated that Buyang Huanwu Decoction treatment significantly improved tissue pathological damage, reduced collagen deposition, and alleviated lipid metabolism dysregulation. Western blot analysis confirmed that Buyang Huanwu Decoction mediated the upregulation of PPARG and inhibited the activation of the SPP1/CD44 pathway. The multi-omics study elucidated the role of the PPARG/SPP1/CD44 pathway as a key regulatory factor in lipid metabolism in IPF, providing evidence that Buyang Huanwu Decoction exerted its antifibrotic effects through this novel mechanism and thus offering new insights into the therapeutic prospects for IPF.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
PPAR gamma/genetics*
;
Humans
;
Osteopontin/genetics*
;
Lipid Metabolism/drug effects*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
Hyaluronan Receptors/genetics*
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Molecular Docking Simulation

Result Analysis
Print
Save
E-mail