1.Xiaoyaosan Regulates HPT Axis in Rat Model with Syndrome of Liver Depression and Spleen Deficiency via CGA/GPX2/TSHβ Pathway for Thyroid Hormone Synthesis
Fang WANG ; Ruxin YUAN ; Lingjin FAN ; Zongli CHEN ; Huaye XIAO ; Liqiang YANG ; Xiaohong LI ; Chuncheng ZHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):1-10
ObjectiveTo explore the mechanism by which Xiaoyaosan regulates HPT axis dysfunction in the rat model with the syndrome of liver depression and spleen deficiency by observing its effect on the glycoprotein hormone α-subunit (CGA)/glutathione peroxidase 2 (GPX2)/thyroid-stimulating hormone β-subunit (TSHβ) pathway for thyroid hormone synthesis. MethodsSeventy-two male SD rats were randomized into six groups: normal, model, high-dose (16.7 g·kg-1), medium-dose (8.35 g·kg-1), and low-dose (4.175 g·kg-1) Xiaoyaosan, and fluoxetine (0.001 8 g·kg-1) groups, with 12 rats in each group. The rat model of liver depression and spleen deficiency was induced by chronic restraint stress for 21 days. The intervention groups were treated with Xiaoyaosan decoctions or fluoxetine suspension, respectively. After modeling, hematoxylin-eosin staining was employed to observe morphological changes in the thyroid and pituitary tissue of the rats. Serum levels of triiodothyronine (T3), tetraiodothyronine (T4), and thyroid-stimulating hormone (TSH) were measured by enzyme-linked immunosorbent assay (ELISA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of TSH receptor (TSHR) in the thyroid tissue, thyrotropin-releasing hormone receptor (TRHR) and TSHβ in the pituitary tissue, and thyrotropin-releasing hormone (TRH), CGA, GPX2, and TSHβ in the hypothalamic tissue. ResultsCompared with the normal group, the model group showed significant atrophy and irregularity of thyroid follicles, a marked reduction in colloid secretion, extensive vacuolar degeneration of adenocytes in the anterior pituitary, lowered serum levels of T3, T4, and TSH (P<0.01), and down-regulated mRNA and protein levels of TSHR in the thyroid tissue, TRHR and TSHβ in the pituitary tissue, and TRH, CGA, GPX2, and TSHβ in the hypothalamic tissue (P<0.01). Compared with the model group, high- and medium-dose Xiaoyaosan and fluoxetine alleviated the pathological changes in the thyroid and pituitary tissue, outperforming the low-dose Xiaoyaosan group. Moreover, they elevated the serum levels of T3, T4, and TSH (P<0.05, P<0.01). The serum TSH level was also elevated in the low-dose Xiaoyaosan group (P<0.05). The mRNA and protein levels of TSHR in the thyroid, TRHR and TSHβ in the pituitary, and TRH, CGA, GPX2, and TSHβ in the hypothalamus were up-regulated in the high- and medium-dose Xiaoyaosan groups (P<0.05, P<0.01). Additionally, the mRNA and protein levels of TSHβ in the hypothalamus were up-regulated in the low-dose Xiaoyaosan group (P<0.01). In the fluoxetine group, the mRNA and protein levels of TSHR in the thyroid, TRHR in the pituitary, and TRH, CGA, and GPX2 in the hypothalamus were up-regulated (P<0.05, P<0.01). ConclusionThe downregulation of CGA/GPX2/TSHβ pathway may be one of the biological mechanisms underlying HPT axis dysfunction in the rat model with the syndrome of liver depression and spleen deficiency. Xiaoyaosan may regulate the HPT axis dysfunction by up-regulating the CGA/GPX2/TSHβ pathway.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Dispersion effect of bone cement after vertebroplasty using individualized unilateral external pedicle approach and bilateral pedicle approach
Lichuang ZHANG ; Wen YANG ; Guangjiang DING ; Peikun LI ; Zhongyu XIAO ; Ying CHEN ; Xue FANG ; Teng ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(4):800-808
BACKGROUND:According to existing clinical studies,vertebroplasty treatment with both the external pedicle approach and the pedicle approach can improve the pain and quality of life of patients with spinal compression fractures.Compared with the pedicle approach,the external pedicle approach has a freer puncture angle,and good bone cement dispersion effect can be obtained by adjusting the puncture angle. OBJECTIVE:To compare the impact of vertebroplasty through individualized unilateral external pedicle approach and bilateral pedicle approach on the treatment of spinal compression fractures by quantifying the dispersion effect of bone cement. METHODS:A total of 80 patients with thoracolumbar compression fracture were divided into two groups by random number table method.The bilateral pedicle group(n=40)underwent vertebroplasty through a bilateral pedicle approach,while the unilateral external pedicle group(n=40)underwent individualized vertebroplasty through a unilateral external pedicle approach.Anteroposterior and lateral X-rays of the affected vertebrae from two groups of patients were photographed to assess effect and type of bone cement dispersion within 3 days after surgery.Visual analog scale score,tenderness threshold around fracture,and Oswestry dysfunction index were assessed before,1,7 days,and 1 month after surgery. RESULTS AND CONCLUSION:(1)Dispersion effect of bone cement in unilateral external pedicle group was better than that in bilateral pedicle group(P<0.001),and the amount of bone cement perfusion was higher than that in bilateral pedicle group(P<0.001).In the bilateral pedicle group,the bone cement dispersion types were mainly concentrated in type Ⅰ and type Ⅲ,while in the unilateral external pedicle group,the bone cement dispersion types were mainly concentrated in type I and type Ⅱ,and there was a significant difference in bone cement dispersion types between the two groups(P<0.001).(2)Postoperative visual analog scale scores and Oswestry disability index of both groups were lower than those before surgery(P<0.001),and postoperative tenderness threshold around fracture showed a trend of decreasing first and then increasing.At the same time point after treatment,there were no significant differences in visual analog scale score,Oswestry disability index,and tenderness threshold around fracture between the two groups(P>0.05).(3)The results indicate that individualized vertebroplasty via unilateral external pedicle approach can achieve better bone cement dispersion,and the treatment effect is consistent with the vertebroplasty via classical bilateral pedicle approach.
4.Application of the combined tumor burden score and platelet-albumin-bilirubin score model for predicting postoperative tumor recurrence in liver transplant recipients with hepatocellular carcinoma
Weidong ZHU ; Junyang XIAO ; Xiaoji QIU ; Lizhi LÜ ; Jianwei CHEN ; Fang YANG
Organ Transplantation 2025;16(4):556-564
Objective To investigate the predictive value of the combined tumor burden score (TBS) and platelet-albumin-bilirubin (PALBI) score model for postoperative tumor recurrence in liver transplant recipients with hepatocellular carcinoma (HCC). Methods The general information of 158 recipients diagnosed with HCC and underwent liver transplantation at the 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army from 2008 to 2021 was collected. Lasso regression analysis combined with multivariate Cox regression analysis were used to identify independent risk factors for postoperative tumor recurrence after liver transplantation with HCC. A nomogram prediction model was constructed based on variables selected by Lasso regression analysis, and the predictive performance of the model was verified by calibration curve and clinical decision curve. The optimal cut-off values for postoperative tumor recurrence in liver transplant recipients with HCC were determined by receiver operating characteristic (ROC) curve, and Kaplan-Meier analysis was used to compare survival differences among different groups. Results Among the 158 liver transplant recipients with HCC, 82 experienced tumor recurrence, with a recurrence rate of 51.9% and a median tumor-free survival time of 10 (4, 25) months. Results of Lasso regression analysis and multivariate Cox regression analysis showed that alpha-fetoprotein (AFP) ≥400 ng/mL, TBS and PALBI score were all independent risk factors for postoperative tumor recurrence in liver transplant recipients with HCC (all P<0.05). The combined high TBS-high PALBI score showed the highest predictive value (hazard ratio 6.909, 95% confidence interval 3.067-15.563, P<0.001). A nomogram prediction model was constructed based on six variables selected by Lasso regression analysis. Calibration curve showed good consistency between the model's predicted results and the ideal curve. Decision curve analysis indicated that the nomogram prediction model provided the highest clinical benefit for predicting 1-year tumor-free survival after liver transplantation with HCC. Time-dependent ROC curves at 1, 3 and 5 years after surgery showed that TBS-PALBI model had good predictive performance, with no significant difference in area under the curve (AUC) compared with TBS-PALBI-AFP model. The optimal cut-off values for predicting postoperative tumor recurrence were determined by ROC curve, with a PALBI score cut-off of −2.334 and a TBS cut-off of 5.305. Recipients were divided into a low TBS-low PALBI score group (n=47) and a low/high TBS-low/high PALBI score group (at least one score was high) (n=111). Kaplan-Meier survival analysis showed that the low TBS-low PALBI score group had a higher tumor-free survival rate than the low/high TBS-low/high PALBI score group, with a significant difference (P<0.05). Conclusions TBS-PALBI model provides a novel, simple and effective tool for assessing the prognosis of liver transplant recipients with HCC. The nomogram model constructed based on this has significant advantages in predictive performance and may serve as a reference for guiding individualized treatment plans and improving clinical outcomes.
5.Untargeted Metabolomics Reveals Mechanism of Modified Sinisan in Ameliorating Anxiety-like Behaviors Induced by Chronic Restraint Stress in Mice
Jie ZHAO ; Zhengyu FANG ; He XIAO ; Na GUO ; Hongwei WU ; Hongjun YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):70-79
ObjectiveTo elucidate the potential mechanism of modified Sinisan (MSNS) in alleviating anxiety-like behaviors induced by chronic restraint stress (CRS) in mice at the metabolic level based on serum untargeted metabolomics and identify key metabolites and metabolic pathways regulated by MSNS. MethodsSeventy-two male C57BL/6 mice were randomly assigned into six groups: control, model, high-dose (2.4 g·kg-1) MSNS, medium-dose (1.2 g·kg-1) MSNS, low-dose (0.6 g·kg-1) MSNS, and positive control (fluoxetine, 2.6 mg·kg-1). Except the control group, the other groups were subjected to CRS for the modeling of anxiety. Mice were administrated with corresponding agents by gavage 2 h before daily restraint for 14 days. Anxiety-like behaviors were evaluated by the open field test (OFT), elevated plus maze (EPM) test, and light/dark box (LDB) test. Serum levels of corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH), and corticosterone (CORT) were measured via ELISA to assess stress levels. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to detect 9 metabolites in the brain tissue and serum metabolites. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted to identify differential metabolites (VIP>1.0, P<0.05). MetaboAnalyst 5.0 was used for metabolic pathway enrichment analysis of the differential metabolites. ResultsCompared with the control group, the model group showed reductions in the central activity time and central distance in the OFT (P<0.05), the proportions of open-arm residence time and open-arm residence times in the EPM test (P<0.01), and the proportions of open box activity time and open box activity distance in the LDB test (P<0.05), which were increased in the medium- and high-dose MSNS groups compared with the model group (P<0.05). Compared with the control group, the model group showed elevated levels of CRH, ACTH, and CORT in the serum (P<0.01), and the elevations were diminished in the medium- and high-dose MSNS groups (P<0.05). UPLC-MS results indicated that compared with the control group, the model group presented declined DA, GABA, 5-HIAA, 5-HT, and 5-HT/Trp levels (P<0.05, P<0.01) and raised Glu, NE, Kyn, and Kyn/Trp levels (P<0.05). Compared with the model group, high-dose MSNS increased the GABA, 5-HIAA, and 5-HT/Trp levels (P<0.05) and lowered the Glu and Kyn/Trp levels (P<0.05). Untargeted metabolomics identified that 16 CRS-induced metabolic disturbances were reversed by MSNS. KEGG pathway analysis indicated that MSNS primarily modulated eight core pathways including alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, TCA cycle, unsaturated fatty acid biosynthesis, and tryptophan metabolism. The mechanisms involved multidimensional biological processes, including neurotransmitter homeostasis regulation, TCA cycle energy metabolism optimization, and inflammatory response suppression. ConclusionMSNS alleviates CRS-induced anxiety-like behaviors in mice by mitigating hypothalamic-pituitary-adrenal axis hyperactivity, improving hippocampal neurotransmitter and tryptophan metabolic pathways, and regulating alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, and TCA cycle.
6.Untargeted Metabolomics Reveals Mechanism of Modified Sinisan in Ameliorating Anxiety-like Behaviors Induced by Chronic Restraint Stress in Mice
Jie ZHAO ; Zhengyu FANG ; He XIAO ; Na GUO ; Hongwei WU ; Hongjun YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):70-79
ObjectiveTo elucidate the potential mechanism of modified Sinisan (MSNS) in alleviating anxiety-like behaviors induced by chronic restraint stress (CRS) in mice at the metabolic level based on serum untargeted metabolomics and identify key metabolites and metabolic pathways regulated by MSNS. MethodsSeventy-two male C57BL/6 mice were randomly assigned into six groups: control, model, high-dose (2.4 g·kg-1) MSNS, medium-dose (1.2 g·kg-1) MSNS, low-dose (0.6 g·kg-1) MSNS, and positive control (fluoxetine, 2.6 mg·kg-1). Except the control group, the other groups were subjected to CRS for the modeling of anxiety. Mice were administrated with corresponding agents by gavage 2 h before daily restraint for 14 days. Anxiety-like behaviors were evaluated by the open field test (OFT), elevated plus maze (EPM) test, and light/dark box (LDB) test. Serum levels of corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH), and corticosterone (CORT) were measured via ELISA to assess stress levels. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to detect 9 metabolites in the brain tissue and serum metabolites. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted to identify differential metabolites (VIP>1.0, P<0.05). MetaboAnalyst 5.0 was used for metabolic pathway enrichment analysis of the differential metabolites. ResultsCompared with the control group, the model group showed reductions in the central activity time and central distance in the OFT (P<0.05), the proportions of open-arm residence time and open-arm residence times in the EPM test (P<0.01), and the proportions of open box activity time and open box activity distance in the LDB test (P<0.05), which were increased in the medium- and high-dose MSNS groups compared with the model group (P<0.05). Compared with the control group, the model group showed elevated levels of CRH, ACTH, and CORT in the serum (P<0.01), and the elevations were diminished in the medium- and high-dose MSNS groups (P<0.05). UPLC-MS results indicated that compared with the control group, the model group presented declined DA, GABA, 5-HIAA, 5-HT, and 5-HT/Trp levels (P<0.05, P<0.01) and raised Glu, NE, Kyn, and Kyn/Trp levels (P<0.05). Compared with the model group, high-dose MSNS increased the GABA, 5-HIAA, and 5-HT/Trp levels (P<0.05) and lowered the Glu and Kyn/Trp levels (P<0.05). Untargeted metabolomics identified that 16 CRS-induced metabolic disturbances were reversed by MSNS. KEGG pathway analysis indicated that MSNS primarily modulated eight core pathways including alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, TCA cycle, unsaturated fatty acid biosynthesis, and tryptophan metabolism. The mechanisms involved multidimensional biological processes, including neurotransmitter homeostasis regulation, TCA cycle energy metabolism optimization, and inflammatory response suppression. ConclusionMSNS alleviates CRS-induced anxiety-like behaviors in mice by mitigating hypothalamic-pituitary-adrenal axis hyperactivity, improving hippocampal neurotransmitter and tryptophan metabolic pathways, and regulating alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, and TCA cycle.
7.Advances in Quantification and Site Stoichiometry Analysis Methods for Phosphorylated Proteins
Yuan LIU ; Rui ZHAI ; Fan WU ; Zhan-Ying CHU ; Yang ZHAO ; Xin-Hua DAI ; Xiang FANG ; Xiao-Ping YU
Chinese Journal of Analytical Chemistry 2024;52(5):609-623
The post-translational modification of proteins is a key mechanism that imparts physiological functions to proteins,among which reversible phosphorylation modifications play a pivotal role in many biological processes.Aberrant changes in phosphorylation are often closely associated with various major disease processes.In recent years,with the aid of proteomic technologies and methods,high-throughput,high-precision qualitative and quantitative approaches for phosphorylated proteins have rapidly advanced.This article reviews the research progress of phosphorylated protein quantification and chemical proteomics analysis methods based on the"bottom-up"strategy,including phosphopeptide enrichment methods,mass spectrometry fragmentation methods,quantification analysis methods and phosphorylation site stoichiometry,and discusses the development trend of quantification and stoichiometric analysis methods for phosphorylated proteins.
8.Rapid screening the chemical components in Jiawei Dingzhi pills using precursor ion selection UHPLC-Q-TOF-MS/MS
Zu-ying WEI ; Cong FANG ; Kui CHEN ; Hao-lan YANG ; Jie LIU ; Zhi-xin JIA ; Yue-ting LI ; Hong-bin XIAO
Acta Pharmaceutica Sinica 2024;59(8):2350-2364
A precursor ion selection (PIS) based ultra high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) analytical method was used to screen the chemical components in Jiawei Dingzhi pills (JWDZP) comprehensively and rapidly. To compile the components of the compound medicine, a total of 1 921 components were found utilizing online databases and literature. After verifying the sources, unifying the component names, merging the multi-flavor attributed components, and removing the weak polar molecules, 450 components were successfully retained. The Acquity UPLC HSS T3 column (100 mm × 2.1 mm, 1.8 μm) was used, with a 0.1% formic acid water (A)-acetonitrile (B) as the mobile phase. The flow rate was 0.35 mL·min-1, the column temperature was 35 ℃, and an electrospray ion source was used. Data was collected with the PIS strategy in both positive and negative ion modes. Compounds were screened through matching accurate molecular weight of the database, and identified according to MS/MS data (characteristic fragment ions and neutral loss), with comparison of reference. Some compounds were confirmed using standard products. A total of 176 compounds were screened out in the extract of JWDZP, among which 26 compounds were confirmed by standard products. These compounds include 96 components from the sovereign drug, and 34 coefflux components with low ion intensity. The PIS-UHPLC-Q-TOF-MS/MS method established in this study can quickly and comprehensively screen the chemical components of JWDZP, which enhanced the screening rate of components with co-elution compounds of low ion intensities and provided a basis for the study of the material foundation of JWDZP.
9.No Incidence of Liver Cancer Was Observed in A Retrospective Study of Patients with Aristolochic Acid Nephropathy.
Tao SU ; Zhi-E FANG ; Yu-Ming GUO ; Chun-Yu WANG ; Jia-Bo WANG ; Dong JI ; Zhao-Fang BAI ; Li YANG ; Xiao-He XIAO
Chinese journal of integrative medicine 2024;30(2):99-106
OBJECTIVE:
To assess the risk of aristolochic acid (AA)-associated cancer in patients with AA nephropathy (AAN).
METHODS:
A retrospective study was conducted on patients diagnosed with AAN at Peking University First Hospital from January 1997 to December 2014. Long-term surveillance and follow-up data were analyzed to investigate the influence of different factors on the prevalence of cancer. The primary endpoint was the incidence of liver cancer, and the secondary endpoint was the incidence of urinary cancer during 1 year after taking AA-containing medication to 2014.
RESULTS:
A total of 337 patients diagnosed with AAN were included in this study. From the initiation of taking AA to the termination of follow-up, 39 patients were diagnosed with cancer. No cases of liver cancer were observed throughout the entire follow-up period, with urinary cancer being the predominant type (34/39, 87.17%). Logistic regression analysis showed that age, follow-up period, and diabetes were potential risk factors, however, the dosage of the drug was not significantly associated with urinary cancer.
CONCLUSIONS
No cases of liver cancer were observed at the end of follow-up. However, a high prevalence of urinary cancer was observed in AAN patients. Establishing a direct causality between AA and HCC is challenging.
Humans
;
Retrospective Studies
;
Incidence
;
Carcinoma, Hepatocellular
;
Liver Neoplasms/epidemiology*
;
Kidney Diseases/chemically induced*
;
Aristolochic Acids/adverse effects*
10.Real-world Study of the Safety and Efficacy of Pembrolizumab in the Treatment of Advanced Non-small Cell Lung Cancer
WAN NING ; WANG BING ; GUO YA ; HE ZIJIAN ; YANG CHEN ; YANG NING ; LU LIQING ; LIANG HONGYI ; XIAO WEIBIN ; YANG DANDAN ; CHEN ZHUOJIA ; FANG WENFENG ; LIANG WEITING
Chinese Journal of Lung Cancer 2024;27(10):745-754
Background and objective Pembrolizumab(PEM)has been shown to be effective in clinical trials for the treatment of advanced non-small cell lung cancer(NSCLC),but clinical trials were based on cohorts of patients selected on specific criteria,and whether the findings are consistent with real-world patients is debatable.The aim of this study is to evaluate the efficacy and safety of PEM in the treatment of advanced NSCLC based on real-world data.Methods A retro-spective collection of real-world data from patients with advanced NSCLC receiving PEM was conducted.Propensity score matching was used to eliminate inter-group differences and assess the efficacy and safety of PEM compared to chemotherapy.Results Among 450 matched patients,the incidence rates of any-grade adverse events were 79.87%in the PEM group and86.71%inthe chemotherapy group,while the incidence rates of grade>3 adverse events were 4.03%and 7.31%,respectively.The objective response rates were 48.63%for PEM and 36.00%for chemotherapy(P=0.011).The median progression-free survival was 15.5 months for PEM and 8.8 months for chemotherapy(P<0.001),and the median overall survival was not reached for PEM and 26.2 months for chemotherapy(P<0.001).Conclusion PEM treatment for advanced NSCLC demonstrates favorable survival outcomes and acceptable safety in real-world clinical practice.

Result Analysis
Print
Save
E-mail