1.Analysis of Changes on Volatile Components of Ligusticum sinense cv. Chaxiong Rhizome Before and After Wine Processing Based on Electronic Nose and HS-GC-MS
Wen ZHANG ; Peng ZHENG ; Jiangshan ZHANG ; Xiaolin XIAO ; Zaodan WU ; Li XIN ; Wenhui GONG ; Jinlian ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):173-181
ObjectiveBy comparing the composition and content of volatile components in raw products, wine-washed products and wine-fried products of Ligusticum sinense cv. Chaxiong rhizome(LSCR), to investigate the influence of wine processing on the volatile components of LSCR, in order to provide a basis for the development of quality standards for LSCR and its processed products. MethodsElectronic nose was used to identify the odors of LSCR, wine-washed and wine-fried LSCR, and their volatile components were detected by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the relative mass fractions of these components were determined by peak area normalization method. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were performed on the obtained sample data by SIMCA 14.1 software, and the differential components of LSCR, wine-washed and wine-fried LSCR were screened according to the variable importance in the projection(VIP) value>1. Pearson correlation analysis was used to explore the relationship between volatile differential flavor components and electronic nose sensors. ResultsElectronic nose detection results showed that there were significant differences in the odors of LSCR, wine-washed and wine-fried LSCR, mainly reflected in the sensors S2, S4, S5, S6, S11, S12, S13. And a total of 62 compounds were identified from LSCR and its wine-processed products, among which 46, 50 and 51 compounds were identified from LSCR, wine-fried and wine-washed LSCR, respectively. There were 21 differential components between the raw products and wine-fried products, of which 10 components were increased and 11 were decreased after processing. There were 20 differential components between the raw products and wine-washed products, of which 11 constituents increased and 9 decreased after processing. There were 17 differential components between the wine-wash products and wine-fried products. Compared with the wine-washed products, the contents of 13 components in the wine-fried products increased, and the contents of 4 components decreased. The increasing trend of the content of phthalides in the wine-washed products was more obvious than that in the wine-fried products, but the content of total volatile components was higher in the wine-fried products than the wine-washed products. Correlation analysis showed that there were different degrees of correlation between the 7 differential sensors of electronic nose and 24 differential volatile components, mainly phthalides and olefins. ConclusionThe odor and the content of volatile components in LSCR changed obviously after wine processing, and n-butylphthalide, Z-butylidenephthalide and E-ligustilide can be used as the candidate differential markers of volatile components in LSCR before and after wine processing.
2.Study on The Detection Method of Fat Infiltration in Muscle Tissue Based on Phase Angle Electrical Impedance Tomography
Wu-Guang XIAO ; Xiao-Peng ZHU ; Hui FENG ; Bo SUN ; Tong ZHAO ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2025;52(10):2663-2676
ObjectiveFat infiltration has been shown to be closely related to muscle mass loss and a variety of muscle diseases. This study proposes a method based on phase-angle electrical impedance tomography (ΦEIT) to visualize the electrical characteristic response caused by muscle fat infiltration, aiming to provide a new technical means for early non-invasive detection of muscle mass deterioration. MethodsThis study was divided into two parts. First, a laboratory pork model was constructed to simulate different degrees of fat infiltration by injecting1 ml or 2 ml of emulsified fat solution into different muscle compartments, and the phase angle images were reconstructed using ΦEIT. Second, a human experiment was conducted to recruit healthy subjects (n=8) from two age groups (20-25 years old and 26-30 years old). The fat content percentage ηfat of the left and right legs was measured by bioelectrical impedance analysis (BIA), and the phase angle images of the left and right calves were reconstructed using ΦEIT. The relationship between the global average phase angle ΦM and the spatial average phase angle ΦMi of each muscle compartment and fat infiltration was further analyzed. ResultsIn the laboratory pork model, the grayscale value of the image increased with the increase of ηfat and ΦM showed a downward trend. The results of human experiments showed that at the same fat content percentage, the ΦM of the 26-30-year-old group was about 20%-35% lower than that of the 20-25-year-old group. The fat content percentage was significantly negatively correlated with ΦM. In addition, the M2 (soleus) compartment was most sensitive to fat infiltration, and the spatial average phase angles of the M2 (soleus), M3 (tibialis posterior and flexor digitorum longus), and M4 (tibialis anterior, extensor digitorum longus, and peroneus longus) compartments all showed significant inter-group differences. ConclusionΦEIT imaging can effectively distinguish different degrees of fat infiltration, especially in deep, small or specially located muscles, showing high sensitivity, demonstrating the potential application of this method in local muscle mass monitoring and early non-invasive diagnosis.
3.Association of higher serum follicle-stimulating hormone levels with successful microdissection testicular sperm extraction outcomes in nonobstructive azoospermic men with reduced testicular volumes.
Ming-Zhe SONG ; Li-Jun YE ; Wei-Qiang XIAO ; Wen-Si HUANG ; Wu-Biao WEN ; Shun DAI ; Li-Yun LAI ; Yue-Qin PENG ; Tong-Hua WU ; Qing SUN ; Yong ZENG ; Jing CAI
Asian Journal of Andrology 2025;27(3):440-446
To investigate the impact of preoperative serum follicle-stimulating hormone (FSH) levels on the probability of testicular sperm retrieval, we conducted a study of nonobstructive azoospermic (NOA) men with different testicular volumes (TVs) who underwent microdissection testicular sperm extraction (micro-TESE). A total of 177 NOA patients undergoing micro-TESE for the first time from April 2019 to November 2022 in Shenzhen Zhongshan Obstetrics and Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital, Shenzhen, China) were retrospectively reviewed. The subjects were divided into four groups based on average TV quartiles. Serum hormone levels in each TV group were compared between positive and negative sperm retrieval subgroups. Overall sperm retrieval rate was 57.6%. FSH levels (median [interquartile range]) were higher in the positive sperm retrieval subgroup compared with the negative outcome subgroup when average TV was <5 ml (first quartile [Q1: TV <3 ml]: 43.32 [17.92] IU l -1 vs 32.95 [18.56] IU l -1 , P = 0.048; second quartile [Q2: 3 ml ≤ TV <5 ml]: 31.31 [15.37] IU l -1 vs 25.59 [18.40] IU l -1 , P = 0.042). Elevated serum FSH levels were associated with successful micro-TESE sperm retrieval in NOA men whose average TVs were <5 ml (adjusted odds ratio [OR]: 1.06 per unit increase; 95% confidence interval [CI]: 1.01-1.11; P = 0.011). In men with TVs ≥5 ml, larger TVs were associated with lower odds of sperm retrieval (adjusted OR: 0.84 per 1 ml increase; 95% CI: 0.71-0.98; P = 0.029). In conclusion, elevated serum FSH levels were associated with positive sperm retrieval in micro-TESE in NOA men with TVs <5 ml. In men with TV ≥5 ml, increases in average TVs were associated with lower odds of sperm retrieval.
Humans
;
Male
;
Azoospermia/surgery*
;
Sperm Retrieval/statistics & numerical data*
;
Adult
;
Follicle Stimulating Hormone/blood*
;
Retrospective Studies
;
Testis/pathology*
;
Microdissection
;
Organ Size
4.Diagnosis of coronary artery lesions in children based on Z-score regression model.
Yong WANG ; Jia-Ying JIANG ; Yan DENG ; Bo LI ; Ping SHUAI ; Xiao-Ping HU ; Yin-Yan ZHANG ; Han WU ; Lu-Wei YE ; Qian PENG
Chinese Journal of Contemporary Pediatrics 2025;27(2):176-183
OBJECTIVES:
To construct a Z-score regression model for coronary artery diameter based on echocardiographic data from children in Sichuan Province and to establish a Z-score calculation formula.
METHODS:
A total of 744 healthy children who underwent physical examinations at Sichuan Provincial People's Hospital from January 2020 to December 2022 were selected as the modeling group, while 251 children diagnosed with Kawasaki disease at the same hospital from January 2018 to December 2022 were selected as the validation group. Pearson correlation analysis was conducted to analyze the relationships between coronary artery diameter values and age, height, weight, and body surface area. A regression model was constructed using function transformation to identify the optimal regression model and establish the Z-score calculation formula, which was then validated.
RESULTS:
The Pearson correlation analysis showed that the correlation coefficients for the diameters of the left main coronary artery, left anterior descending artery, left circumflex artery, and right coronary artery with body surface area were 0.815, 0.793, 0.704, and 0.802, respectively (P<0.05). Among the constructed regression models, the power function regression model demonstrated the best performance and was therefore chosen as the optimal model for establishing the Z-score calculation formula. Based on this Z-score calculation formula, the detection rate of coronary artery lesions was found to be 21.5% (54/251), which was higher than the detection rate based on absolute values of coronary artery diameter. Notably, in the left anterior descending and left circumflex arteries, the detection rate of coronary artery lesions using this Z-score calculation formula was higher than that of previous classic Z-score calculation formulas.
CONCLUSIONS
The Z-score calculation formula established based on the power function regression model has a higher detection rate for coronary artery lesions, providing a strong reference for clinicians, particularly in assessing coronary artery lesions in children with Kawasaki disease.
Humans
;
Male
;
Female
;
Child, Preschool
;
Child
;
Coronary Artery Disease/diagnostic imaging*
;
Infant
;
Mucocutaneous Lymph Node Syndrome
;
Regression Analysis
;
Coronary Vessels/diagnostic imaging*
;
Echocardiography
;
Adolescent
5.Relationship between polygenic risk scores for various psychiatric disorders and clinical and neuropsychological characteristics in children with attention-deficit/hyperactivity disorder.
Zhao-Min WU ; Peng WANG ; Chao DONG ; Xiao-Lan CAO ; Lan-Fang HU ; Cong KOU ; Jia-Jing JIANG ; Lin-Lin ZHANG ; Li YANG ; Yu-Feng WANG ; Ying LI ; Bin-Rang YANG
Chinese Journal of Contemporary Pediatrics 2025;27(9):1089-1097
OBJECTIVES:
To investigate the relationship between the polygenic risks for various psychiatric disorders and clinical and neuropsychological characteristics in children with attention-deficit/hyperactivity disorder (ADHD).
METHODS:
Using a cross-sectional design, 285 children with ADHD and 107 healthy controls were assessed using the Child Behavior Checklist, the Behavior Rating Inventory of Executive Function for parents, the Wechsler Intelligence Scale for Children, Fourth Edition, and the Cambridge Neuropsychological Test Automated Battery. Blood samples were collected for genetic data. Polygenic risk scores (PRSs) for various psychiatric disorders were calculated using the PRSice-2 software.
RESULTS:
Compared with the healthy controls, the children with ADHD displayed significantly higher PRSs for ADHD, major depressive disorder, anxiety disorder, and obsessive-compulsive disorder (P<0.05). In terms of daily-life executive function, ADHD-related PRS was significantly correlated with the working memory factor; panic disorder-related PRS was significantly correlated with the initiation factor; bipolar disorder-related PRS was significantly correlated with the shift factor; schizophrenia-related PRS was significantly correlated with the inhibition, emotional control, initiation, working memory, planning, organization, and monitoring factors (P<0.05). The PRS related to anxiety disorders was negatively correlated with total IQ and processing speed index (P<0.05). The PRS related to obsessive-compulsive disorder was negatively correlated with the processing speed index and positively correlated with the stop-signal reaction time index of the stop-signal task (P<0.05).
CONCLUSIONS
PRSs for various psychiatric disorders are closely correlated with the behavioral and cognitive characteristics in children with ADHD, which provides more insights into the heterogeneity of ADHD.
Humans
;
Attention Deficit Disorder with Hyperactivity/genetics*
;
Child
;
Male
;
Female
;
Cross-Sectional Studies
;
Neuropsychological Tests
;
Multifactorial Inheritance
;
Adolescent
;
Mental Disorders/etiology*
;
Executive Function
;
Genetic Risk Score
6.Extracellular vesicles deliver thioredoxin to rescue stem cells from senescence and intervertebral disc degeneration via a feed-forward circuit of the NRF2/AP-1 composite pathway.
Xuanzuo CHEN ; Sheng LIU ; Huiwen WANG ; Yiran LIU ; Yan XIAO ; Kanglu LI ; Feifei NI ; Wei WU ; Hui LIN ; Xiangcheng QING ; Feifei PU ; Baichuan WANG ; Zengwu SHAO ; Yizhong PENG
Acta Pharmaceutica Sinica B 2025;15(2):1007-1022
Intervertebral disc degeneration (IDD) is largely attributed to impaired endogenous repair. Nucleus pulposus-derived stem cells (NPSCs) senescence leads to endogenous repair failure. Small extracellular vesicles/exosomes derived from mesenchymal stem cells (mExo) have shown great therapeutic potential in IDD, while whether mExo could alleviate NPSCs senescence and its mechanisms remained unknown. We established a compression-induced NPSCs senescence model and rat IDD models to evaluate the therapeutic efficiency of mExo and investigate the mechanisms. We found that mExo significantly alleviated NPSCs senescence and promoted disc regeneration while knocking down thioredoxin (TXN) impaired the protective effects of mExo. TXN was bound to various endosomal sorting complex required for transport (ESCRT) proteins. Autocrine motility factor receptor (AMFR) mediated TXN K63 ubiquitination to promote the binding of TXN on ESCRT proteins and sorting of TXN into mExo. Knocking down exosomal TXN inhibited the transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2) and activator protein 1 (AP-1). NRF2 and AP-1 inhibition reduced endogenous TXN production that was promoted by exosomal TXN. Inhibition of NRF2 in vivo diminished the anti-senescence and regenerative effects of mExo. Conclusively, AMFR-mediated TXN ubiquitination promoted the sorting of TXN into mExo, allowing exosomal TXN to promote endogenous TXN production in NPSCs via TXN/NRF2/AP-1 feed-forward circuit to alleviate NPSCs senescence and disc degeneration.
7.Parabacteroides distasonis promotes liver regeneration by increasing β-hydroxybutyric acid (BHB) production and BHB-driven STAT3 signals.
Manlan GUO ; Xiaowen JIANG ; Hui OUYANG ; Xianglong ZHANG ; Shuaishuai ZHANG ; Peng WANG ; Guofang BI ; Ting WU ; Wenhong ZHOU ; Fengting LIANG ; Xiao YANG ; Shicheng FAN ; Jian-Hong FANG ; Peng CHEN ; Huichang BI
Acta Pharmaceutica Sinica B 2025;15(3):1430-1446
The liver regenerative capacity is crucial for patients with end-stage liver disease following partial hepatectomy (PHx). The specific bacteria and mechanisms regulating liver regeneration post-PHx remain unclear. This study demonstrated dynamic changes in the abundance of Parabacteroides distasonis (P. distasonis) post-PHx, correlating with hepatocyte proliferation. Treatment with live P. distasonis significantly promoted hepatocyte proliferation and liver regeneration after PHx. Targeted metabolomics revealed a significant positive correlation between P. distasonis and β-hydroxybutyric acid (BHB), as well as hyodeoxycholic acid and 3-hydroxyphenylacetic acid in the gut after PHx. Notably, treatment with BHB, but not hyodeoxycholic acid or 3-hydroxyphenylacetic acid, significantly promoted hepatocyte proliferation and liver regeneration in mice after PHx. Moreover, STAT3 inhibitor Stattic attenuated the promotive effects of BHB on cell proliferation and liver regeneration both in vitro and in vivo. Mechanistically, P. distasonis upregulated the expression of fatty acid oxidation-related proteins, and increased BHB levels in the liver, and then BHB activated the STAT3 signaling pathway to promote liver regeneration. This study, for the first time, identifies the involvement of P. distasonis and its associated metabolite BHB in promoting liver regeneration after PHx, providing new insights for considering P. distasonis and BHB as potential strategies for promoting hepatic regeneration.
8.Anterior Cingulate Cortex Contributes to the Hyperlocomotion under Nitrogen Narcosis.
Bin PENG ; Xiao-Bo WU ; Zhi-Jun ZHANG ; De-Li CAO ; Lin-Xia ZHAO ; Hao WU ; Yong-Jing GAO
Neuroscience Bulletin 2025;41(5):775-789
Nitrogen narcosis is a neurological syndrome that manifests when humans or animals encounter hyperbaric nitrogen, resulting in a range of motor, emotional, and cognitive abnormalities. The anterior cingulate cortex (ACC) is known for its significant involvement in regulating motivation, cognition, and action. However, its specific contribution to nitrogen narcosis-induced hyperlocomotion and the underlying mechanisms remain poorly understood. Here we report that exposure to hyperbaric nitrogen notably increased the locomotor activity of mice in a pressure-dependent manner. Concurrently, this exposure induced heightened activation among neurons in both the ACC and dorsal medial striatum (DMS). Notably, chemogenetic inhibition of ACC neurons effectively suppressed hyperlocomotion. Conversely, chemogenetic excitation lowered the hyperbaric pressure threshold required to induce hyperlocomotion. Moreover, both chemogenetic inhibition and genetic ablation of activity-dependent neurons within the ACC reduced the hyperlocomotion. Further investigation revealed that ACC neurons project to the DMS, and chemogenetic inhibition of ACC-DMS projections resulted in a reduction in hyperlocomotion. Finally, nitrogen narcosis led to an increase in local field potentials in the theta frequency band and a decrease in the alpha frequency band in both the ACC and DMS. These results collectively suggest that excitatory neurons within the ACC, along with their projections to the DMS, play a pivotal role in regulating the hyperlocomotion induced by exposure to hyperbaric nitrogen.
Animals
;
Gyrus Cinguli/drug effects*
;
Male
;
Mice, Inbred C57BL
;
Locomotion/drug effects*
;
Neurons/drug effects*
;
Mice
;
Nitrogen/toxicity*
;
Inert Gas Narcosis/physiopathology*
;
Corpus Striatum/physiopathology*
9.SOX11-mediated CBLN2 Upregulation Contributes to Neuropathic Pain through NF-κB-Driven Neuroinflammation in Dorsal Root Ganglia of Mice.
Ling-Jie MA ; Tian WANG ; Ting XIE ; Lin-Peng ZHU ; Zuo-Hao YAO ; Meng-Na LI ; Bao-Tong YUAN ; Xiao-Bo WU ; Yong-Jing GAO ; Yi-Bin QIN
Neuroscience Bulletin 2025;41(12):2201-2217
Neuropathic pain, a debilitating condition caused by dysfunction of the somatosensory nervous system, remains difficult to treat due to limited understanding of its molecular mechanisms. Bioinformatics analysis identified cerebellin 2 (CBLN2) as highly enriched in human and murine proprioceptive and nociceptive neurons. We found that CBLN2 expression is persistently upregulated in dorsal root ganglia (DRG) following spinal nerve ligation (SNL) in mice. In addition, transcription factor SOX11 binds to 12 cis-regulatory elements within the Cbln2 promoter to enhance its transcription. SNL also induced SOX11 upregulation, with SOX11 and CBLN2 co-localized in nociceptive neurons. The siRNA-mediated knockdown of Sox11 or Cbln2 attenuated SNL-induced mechanical allodynia and thermal hyperalgesia. High-throughput sequencing of DRG following intrathecal injection of CBLN2 revealed widespread gene expression changes, including upregulation of numerous NF-κB downstream targets. Consistently, CBLN2 activated NF-κB signaling, and inhibition with pyrrolidine dithiocarbamate reduced CBLN2-induced pain hypersensitivity, proinflammatory cytokines and chemokines production, and neuronal hyperexcitability. Together, these findings identified the SOX11/CBLN2/NF-κB axis as a critical mediator of neuropathic pain and a promising target for therapeutic intervention.
Animals
;
Neuralgia/metabolism*
;
Ganglia, Spinal/metabolism*
;
Up-Regulation
;
Mice
;
NF-kappa B/metabolism*
;
SOXC Transcription Factors/genetics*
;
Male
;
Neuroinflammatory Diseases/metabolism*
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins/genetics*
;
Hyperalgesia/metabolism*
;
Signal Transduction
;
Spinal Nerves
10.Endoplasmic reticulum membrane remodeling by targeting reticulon-4 induces pyroptosis to facilitate antitumor immune.
Mei-Mei ZHAO ; Ting-Ting REN ; Jing-Kang WANG ; Lu YAO ; Ting-Ting LIU ; Ji-Chao ZHANG ; Yang LIU ; Lan YUAN ; Dan LIU ; Jiu-Hui XU ; Peng-Fei TU ; Xiao-Dong TANG ; Ke-Wu ZENG
Protein & Cell 2025;16(2):121-135
Pyroptosis is an identified programmed cell death that has been highly linked to endoplasmic reticulum (ER) dynamics. However, the crucial proteins for modulating dynamic ER membrane curvature change that trigger pyroptosis are currently not well understood. In this study, a biotin-labeled chemical probe of potent pyroptosis inducer α-mangostin (α-MG) was synthesized. Through protein microarray analysis, reticulon-4 (RTN4/Nogo), a crucial regulator of ER membrane curvature, was identified as a target of α-MG. We observed that chemically induced proteasome degradation of RTN4 by α-MG through recruiting E3 ligase UBR5 significantly enhances the pyroptosis phenotype in cancer cells. Interestingly, the downregulation of RTN4 expression significantly facilitated a dynamic remodeling of ER membrane curvature through a transition from tubules to sheets, consequently leading to rapid fusion of the ER with the cell plasma membrane. In particular, the ER-to-plasma membrane fusion process is supported by the observed translocation of several crucial ER markers to the "bubble" structures of pyroptotic cells. Furthermore, α-MG-induced RTN4 knockdown leads to pyruvate kinase M2 (PKM2)-dependent conventional caspase-3/gasdermin E (GSDME) cleavages for pyroptosis progression. In vivo, we observed that chemical or genetic RTN4 knockdown significantly inhibited cancer cells growth, which further exhibited an antitumor immune response with anti-programmed death-1 (anti-PD-1). In translational research, RTN4 high expression was closely correlated with the tumor metastasis and death of patients. Taken together, RTN4 plays a fundamental role in inducing pyroptosis through the modulation of ER membrane curvature remodeling, thus representing a prospective druggable target for anticancer immunotherapy.
Pyroptosis/immunology*
;
Humans
;
Endoplasmic Reticulum/immunology*
;
Animals
;
Nogo Proteins/antagonists & inhibitors*
;
Mice
;
Cell Line, Tumor
;
Xanthones/pharmacology*
;
Neoplasms/pathology*
;
Mice, Nude

Result Analysis
Print
Save
E-mail