1.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
2.Mechanisms of Spermatogenic Dysfunction and Sperm Quality Degradation Induced by Propylthiouracil via Endoplasmic Reticulum Stress in Rats and Interventional Effect of Shugan Bushen Yulin Decoction
Yuhao MENG ; Xiaocui JIANG ; Min XIAO ; Chaoyang WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):79-89
ObjectiveTo investigate the mechanisms through which Shugan Bushen Yulin decoction ameliorates spermatogenic dysfunction and sperm quality degradation caused by propylthiouracil (PTU) via the endoplasmic reticulum stress pathway in rats. MethodsSixty male rats were randomly assigned into six groups: a control group, a model group, low- (6.75 g·kg-1), medium- (13.5 g·kg-1), and high-dose (27 g·kg-1) Shugan Bushen Yulin decoction groups, and an L-carnitine (0.27 g·kg-1) group, with ten rats in each group. Other groups except the control group were administrated with PTU (10 mg·kg-1) by gavage for 12 consecutive days. After the completion of modeling, rats were administrated with corresponding agents or normal saline (control group) via gavage for 28 consecutive days. Twenty-four hours after the last administration, rats were sacrificed, and the body and organ (testis, epididymis, and seminal vesicle) weights were measured to calculate the organ indices. Hematoxylin-eosin staining was employed to observe the pathological changes in the testes and epididymis, and the testicular spermatogenic function of rats was scored. Enzyme-linked immunosorbent assay was employed to measure the levels of thyroid-stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), estradiol (E2), and malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the rat serum. Terminal deoxynucleotidyl transferase dUTP nick end labeling was adopted to assess the rate of testicular cell apoptosis. Western blot was conducted to determine the expression levels of glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (p-PERK), protein kinase RNA-like endoplasmic reticulum kinase (PERK), phosphorylated eukaryotic translation initiation factor 2α kinase (p-EIF2α), eukaryotic translation initiation factor 2α kinase (EIF2α), and activating transcription factor 4 (ATF4) in the testicular tissue of rats. ResultsCompared with the control group, the model group exhibited reductions in volumes and indexes of testes, epididymides, and seminal vesicles (P<0.01), pathological damage of testes and epididymides, and declines in spermatogenic function and sperm density and motility (P<0.01). In addition, the model group demonstrated elevated serum levels of TSH and MDA, lowered levels of T3, T4, FSH, LH, T, and E2, decreased activities of SOD and GSH-Px (P<0.05, P<0.01), an increased apoptosis rate of testicular cells (P<0.01), and up-regulated expression of GRP78, CHOP, p-PERK/PERK, p-EIF2α/EIF2α, and ATF4 in the testicular tissue (P<0.01). Compared with the model group, Shugan Bushen Yulin decoction at different doses improved the morphology and indexes of testes, epididymides, and seminal vesicles (P<0.05), restored the spermatogenic function (P<0.05, P<0.01), increased the sperm density and motility (P<0.05, P<0.01), and decreased the percentage of apoptotic testicular cells (P<0.05). Furthermore, the decoction lowered the serum level of MDA, elevated the serum levels of FSH, LH, T, and E2, and increased the activities of SOD and GSH-Px (P<0.05, P<0.01). Moreover, the expression levels of GRP78, CHOP, p-PERK/PERK, p-EIF2α/EIF2α, and ATF4 in the testicular tissue were down-regulated (P<0.05, P<0.01). ConclusionShugan Bushen Yulin decoction can ameliorate the spermatogenic dysfunction and sperm quality degradation induced by PTU in a rat model of hypothyroidism by repairing the testicular oxidative damage and regulating the PERK/EIF2α/ATF4 signaling pathway, thereby alleviating spermatogenic cell apoptosis.
3.Mechanism of salidroside in inhibiting expression of adhesion molecules in oxLDL-induced endothelial cells by regulating ferroptosis mediated by SIRT1/Nrf2.
Meng ZHANG ; Min XIAO ; Jing-Jing LI ; Jiang-Feng LI ; Guang-Hui FAN
China Journal of Chinese Materia Medica 2025;50(10):2787-2797
This article investigated the effect and mechanism of salidroside(SAL) on the expression of adhesion molecules in oxidized low-density lipoprotein(oxLDL)-induced mouse aortic endothelial cell(MAEC). The oxLDL-induced endothelial cell injury model was constructed, and the safe concentration and action time of SAL were screened. The cells were divided into control group, oxLDL group, low and high concentration groups of SAL, and ferrostatin-1(Fer-1) group. The cell viability was detected by CCK-8 assay; lactate dehydrogenase(LDH) leakage was measured by colorimetry; the expression of intercellular adhesion molecule 1(ICAM-1) and recombinant vascular cell adhesion molecule 1(VCAM-1) were detected by immunofluorescence; Fe~(2+),glutathione(GSH),malondialdehyde(MDA),and 4-hydroxynonenal(4-HNE) levels were detected by kit method; reactive oxygen species(ROS) was detected by DCFH-DA probe; the levels of glutathione peroxidase 4(GPX4),silent mating type information regulation 2 homolog 1(SIRT1), and nuclear factor erythroid 2-related factor 2(Nrf2) were determined by using Western blot. The inhibitors of Nrf2 and SIRT1 were used, and endothelial cell were divided into control group, oxLDL group, SAL group, ML385 group(Nrf2 inhibitor), and EX527 group(SIRT1 inhibitor). The ultrastructure of mitochondria was observed by electron microscope; mitochondrial membrane potential(MMP) was detected by flowcytometry; the expressions of SIRT1,Nrf2,solute carrier family 7 member 11(SLC7A11),GPX4,ferroportin 1(FPN1),ferritin heavy chain 1(FTH1),ICAM-1, and VCAM-1 were detected by Western blot. The results showed that similar to Fer-1,low and high concentrations of SAL could improve cell viability, inhibit LDH release and the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cells(P<0.05 or P<0.01). It was related to increase in GSH level, decrease in Fe~(2+),ROS,MDA, and 4-HNE level, and up-regulation of SIRT1,Nrf2, and GPX4 expression to inhibit ferroptosis(P<0.05 or P<0.01). The intervention effect of high concentration SAL was the most significant. ML385 and EX527 could partially offset the protection of SAL on mitochondrial structure and MMP and reverse the ability of SAL to up-regulate the expression of SIRT1,Nrf2,SLC7A11,GPX4,FPN1, and FTH1 and down-regulate the expression of ICAM-1 and VCAM-1(P<0.05 or P<0.01).To sum up, SAL could reduce the expression of ICAM-1 and VCAM-1 in oxLDL-induced endothelial cell, which may relate to activation of SLC7A11/GPX4 antioxidant signaling pathway mediated by SITR1/Nrf2, up-regulation of FPN1 and FTH1 expression, and inhibition of ferroptosis.
Sirtuin 1/genetics*
;
Animals
;
Ferroptosis/drug effects*
;
Lipoproteins, LDL/metabolism*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Endothelial Cells/cytology*
;
Glucosides/pharmacology*
;
Phenols/pharmacology*
;
Cell Adhesion Molecules/genetics*
;
Reactive Oxygen Species/metabolism*
;
Intercellular Adhesion Molecule-1/genetics*
;
Vascular Cell Adhesion Molecule-1/genetics*
;
Cell Survival/drug effects*
4.Effects of continued use of targeted therapy on patients with pulmonary arterial hypertension and complicated by hemoptysis.
Zhong-Chao WANG ; Xiu-Min HAN ; Yao ZUO ; Na DONG ; Jian-Ming WANG ; Li-Li MENG ; Jia-Wang XIAO ; Ming ZHAO ; Yuan MI ; Qi-Guang WANG
Journal of Geriatric Cardiology 2025;22(3):404-410
5.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
6.Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq.
Heng WANG ; Ang WU ; Meng-Chen YANG ; Di ZHOU ; Xiyang CHEN ; Zhifei SHI ; Yiqun ZHANG ; Yu-Xin LIU ; Kai CHEN ; Xiaosong WANG ; Xiao-Fang CHENG ; Baodan HE ; Yutao FU ; Lan KANG ; Yujun HOU ; Kun CHEN ; Shan BIAN ; Juan TANG ; Jianhuang XUE ; Chenfei WANG ; Xiaoyu LIU ; Jiejun SHI ; Shaorong GAO ; Jia-Min ZHANG
Protein & Cell 2025;16(11):932-952
Gene regulation relies on the precise binding of transcription factors (TFs) at regulatory elements, but simultaneously detecting hundreds of TFs on chromatin is challenging. We developed cFOOT-seq, a cytosine deaminase-based TF footprinting assay, for high-resolution, quantitative genome-wide assessment of TF binding in both open and closed chromatin regions, even with small cell numbers. By utilizing the dsDNA deaminase SsdAtox, cFOOT-seq converts accessible cytosines to uracil while preserving genomic integrity, making it compatible with techniques like ATAC-seq for sensitive and cost-effective detection of TF occupancy at the single-molecule and single-cell level. Our approach enables the delineation of TF footprints, quantification of occupancy, and examination of chromatin influences on TF binding. Notably, cFOOT-seq, combined with FootTrack analysis, enables de novo prediction of TF binding sites and tracking of TF occupancy dynamics. We demonstrate its application in capturing cell type-specific TFs, analyzing TF dynamics during reprogramming, and revealing TF dependencies on chromatin remodelers. Overall, cFOOT-seq represents a robust approach for investigating the genome-wide dynamics of TF occupancy and elucidating the cis-regulatory architecture underlying gene regulation.
Transcription Factors/genetics*
;
Humans
;
Chromatin/genetics*
;
Animals
;
Binding Sites
;
Mice
;
DNA Footprinting/methods*
7.Antidepressant mechanism of Xiaoyaosan: A perspective from energy metabolism of the brain and intestine.
Meng-Ting XIAO ; Sen-Yan WANG ; Xiao-Ling WU ; Zi-Yu ZHAO ; Hui-Min WANG ; Hui-Min LIU ; Xue-Mei QIN ; Xiao-Jie LIU
Journal of Integrative Medicine 2025;23(6):706-720
OBJECTIVE:
This study investigated the antidepression mechanisms of Xiaoyaosan (XYS), a classic Chinese prescription, from the perspective of energy metabolism in the brain and intestinal tissues.
METHODS:
Chronic unpredictable mild stress model-a classic depression rat model-was established. Effects of XYS on behaviors and gastrointestinal motility of depressed rats were investigated. Effects of XYS on energetic charge (EC), adenosine triphosphate-related enzymes, and key enzymes of energy metabolism in both hippocampus and jejunum tissues of depressed rats were investigated using high-performance liquid chromatography, biochemical analysis, and real-time quantitative polymerase chain reaction, respectively. Spearman correlation analysis was conducted to construct a correlation network of "behavior-brain energy metabolism-intestinal energy metabolism" of depression.
RESULTS:
XYS significantly reduced the abnormal behaviors that observed in depressed rats and increased the EC and the activity of Na+-K+-adenosine triphosphatase (ATPase) and Ca2+-Mg2+-ATPase in hippocampus and jejunum tissues of depressed rats. XYS restored the key energetic pathways that had been interrupted by depression, including glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. Furthermore, XYS exhibited antidepressive effects in terms of regulating energy metabolism in tissues of both brain and intestine.
CONCLUSION
XYS significantly corrected the disturbances in EC and energy metabolism-related enzymes of both brain and intestinal tissues, alleviating both core and concomitant symptoms of depression. The current findings underscore the role of energy metabolism in the antidepressive activity of XYS, providing a fresh perspective on depression, and novel research strategies for revealing the mechanism of actions of traditional Chinese medicines on multi-site and multi-symptom diseases. Please cite this article as: Xiao MT, Wang SY, Wu XL, Zhao ZY, Wang HM, Liu HM, Qin XM, Liu XJ. Antidepressant mechanism of Xiaoyaosan: A perspective from energy metabolism of the brain and intestine. J Integr Med. 2025; 23(6):706-720.
Animals
;
Energy Metabolism/drug effects*
;
Antidepressive Agents/therapeutic use*
;
Drugs, Chinese Herbal/therapeutic use*
;
Brain/drug effects*
;
Male
;
Depression/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Intestines/drug effects*
;
Hippocampus/drug effects*
8.Longitudinal Associations between Vitamin D Status and Systemic Inflammation Markers among Early Adolescents.
Ting TANG ; Xin Hui WANG ; Xue WEN ; Min LI ; Meng Yuan YUAN ; Yong Han LI ; Xiao Qin ZHONG ; Fang Biao TAO ; Pu Yu SU ; Xi Hua YU ; Geng Fu WANG
Biomedical and Environmental Sciences 2025;38(1):94-99
9.Comprehensive Analysis of Oncogenic, Prognostic, and Immunological Roles of FANCD2 in Hepatocellular Carcinoma: A Potential Predictor for Survival and Immunotherapy.
Meng Jiao XU ; Wen DENG ; Ting Ting JIANG ; Shi Yu WANG ; Ru Yu LIU ; Min CHANG ; Shu Ling WU ; Ge SHEN ; Xiao Xue CHEN ; Yuan Jiao GAO ; Hongxiao HAO ; Lei Ping HU ; Lu ZHANG ; Yao LU ; Wei YI ; Yao XIE ; Ming Hui LI
Biomedical and Environmental Sciences 2025;38(3):313-327
OBJECTIVE:
Hepatocellular carcinoma (HCC) is sensitive to ferroptosis, a new form of programmed cell death that occurs in most tumor types. However, the mechanism through which ferroptosis modulates HCC remains unclear. This study aimed to investigate the oncogenic role and prognostic value of FANCD2 and provide novel insights into the prognostic assessment and prediction of immunotherapy.
METHODS:
Using clinicopathological parameters and bioinformatic techniques, we comprehensively examined the expression of FANCD2 macroscopically and microcosmically. We conducted univariate and multivariate Cox regression analyses to identify the prognostic value of FANCD2 in HCC and elucidated the detailed molecular mechanisms underlying the involvement of FANCD2 in oncogenesis by promoting iron-related death.
RESULTS:
FANCD2 was significantly upregulated in digestive system cancers with abundant immune infiltration. As an independent risk factor for HCC, a high FANCD2 expression level was associated with poor clinical outcomes and response to immune checkpoint blockade. Gene set enrichment analysis revealed that FANCD2 was mainly involved in the cell cycle and CYP450 metabolism.
CONCLUSION
To the best of our knowledge, this is the first study to comprehensively elucidate the oncogenic role of FANCD2. FANCD2 has a tumor-promoting aspect in the digestive system and acts as an independent risk factor in HCC; hence, it has recognized value for predicting tumor aggressiveness and prognosis and may be a potential biomarker for poor responsiveness to immunotherapy.
Humans
;
Carcinoma, Hepatocellular/diagnosis*
;
Liver Neoplasms/diagnosis*
;
Immunotherapy
;
Fanconi Anemia Complementation Group D2 Protein/metabolism*
;
Prognosis
;
Male
;
Female
;
Middle Aged
;
Biomarkers, Tumor/metabolism*
10.Zuoguiwan Prevent Decreased Ovarian Reserve in Prenatal Stressed Offspring Rats via TLR4/NF-κB p65 Signaling Pathway
Yinjuan LYU ; Weiheng ZHANG ; Siyi CHEN ; Wenjing TIAN ; Jian GONG ; Yuhao MENG ; Huan HE ; Xiaocui JIANG ; Min ZHAO ; Min XIAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(17):67-76
ObjectiveTo observe the effect of Zuoguiwan on ovarian reserve in the female offspring rat model of prenatal stress (PS) and explore the mechanism based on Toll-like receptor 4/nuclear factor-κB p65 (TLR4/NF-κB p65) signaling pathway. MethodThirty-two pregnant rats were prepared and randomized into four groups (n=8): control, model, Zuoguiwan (18.9 mg·kg-1), and vitamin E (1.44 mg·kg-1). Except the control group, the other three groups were subjected to chronic unpredictable mild stress (CUMS) from day 11 of pregnancy, and the modeling was accompanied by gavage with corresponding drugs until delivery. The PS model was evaluated by the sucrose preference test, open field test, and serum corticosterone (CORT) level. The estrous cycle was monitored and the morphological changes in the ovarian tissue were observed. The serum levels of estradiol (E2), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and anti-Mullerian hormone (AMH) in the 75-day-old offspring rats were measured by enzyme-linked immunosorbent assay (ELISA) to evaluate the ovarian reserve. The ovary and uterus indices were calculated. The serum levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay (ELISA). The morphology of the ovarian tissue in the offspring on the day of birth and day 75 after birth was observed by hematoxylin-eosin staining. The transport of NF-κB p65 to the nucleus in the ovaries of the 75-day-old offspring was detected by the immunofluorescence (IF) assay. The expression of TLR4, NF-κB p65 and other related proteins in the ovarian tissue was determined by Western blot. ResultCompared with the control group, the model group showed reduced primordial follicles in the offspring on the day of birth (P<0.01) as well as disturbed estrous cycle, decreased ovary index and uterus index (P<0.01), reduced corpus luteum, increased atretic follicles (P<0.01), lowered serum levels of AMH and E2 (P<0.01), elevated serum levels of LH, FSH, IL-1β, and TNF-α (P<0.05, P<0.01), and up-regulated protein levels of TLR4, NF-κB p65, recombinant myeloid differentiation factor 88 (MyD88), and phosphorylated NF-κB inhibitor (p-IκBα) (P<0.01) in the 75-day-old offspring rats. Compared with the model group, Zuoguiwan and vitamin E increased the primordial follicles in the offspring on the day of birth (P<0.01). Moreover, they resumed the estrous cycle, increased the ovary and uterine indices (P<0.05, P<0.01) and corpus luteum (P<0.01), reduced atretic follicles (P<0.01), elevated the serum levels of AMH and E2 (P<0.05, P<0.01), lowered the serum levels of LH, FSH, IL-1β, and TNF-α (P<0.05, P<0.01), and down-regulated the expression of TLR4, NF-κB p65, MyD88, and p-IκB-α (P<0.05, P<0.01) in the 75-day-old offspring. ConclusionZuoguiwan can improve the ovarian reserve in the offspring rat model of congenital kidney deficiency by regulating the TLR4/NF-κB p65 signaling pathway.

Result Analysis
Print
Save
E-mail