1.Research on software development and smart manufacturing platform incorporating near-infrared spectroscopy for measuring traditional Chinese medicine manufacturing process.
Yan-Fei WU ; Hui XU ; Kai-Yi WANG ; Hui-Min FENG ; Xiao-Yi LIU ; Nan LI ; Zhi-Jian ZHONG ; Ze-Xiu ZHANG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(9):2324-2333
Process analytical technology(PAT) is a key means for digital transformation and upgrading of the traditional Chinese medicine(TCM) manufacturing process, serving as an important guarantee for consistent and controllable TCM product quality. Near-infrared(NIR) spectroscopy has become the core technology for measuring the TCM manufacturing process. By incorporating NIR spectroscopy into PAT and starting from the construction of a smart platform for the TCM manufacturing process, this paper systematically described the development history and innovative application of the combination of NIR spectroscopy with chemometrics in measuring the TCM manufacturing process by the research team over the past two decades. Additionally, it explored the application of a validation method based on accuracy profile(AP) in the practice of NIR spectroscopy. Furthermore, the software development progress driven by NIR spectroscopy supported by modeling technology was analyzed, and the prospect of integrating NIR spectroscopy in smart factory control platforms was exemplified with the construction practices of related platforms. By integrating with the smart platform, NIR spectroscopy could improve production efficiency and guarantee product quality. Finally, the prospect of the smart platform application in measuring the TCM manufacturing process was projected. It is believed that the software development for NIR spectroscopy and the smart manufacturing platform will provide strong technical support for TCM digitalization and industrialization.
Spectroscopy, Near-Infrared/methods*
;
Drugs, Chinese Herbal/analysis*
;
Software
;
Medicine, Chinese Traditional
;
Quality Control
2.Preliminary application of human-computer interaction CT imaging AI recognition and positioning technology in the treatment of type C1 distal radius fractures.
Yong-Zhong CHENG ; Xiao-Dong YIN ; Fei LIU ; Xin-Heng DENG ; Chao-Lu WANG ; Shu-Ke CUI ; Yong-Yao LI ; Wei YAN
China Journal of Orthopaedics and Traumatology 2025;38(1):31-40
OBJECTIVE:
To explore the accuracy of human-computer interaction software in identifying and locating type C1 distal radius fractures.
METHODS:
Based on relevant inclusion and exclusion criteria, 14 cases of type C1 distal radius fractures between September 2023 and March 2024 were retrospectively analyzed, comprising 3 males and 11 females(aged from 27 to 82 years). The data were assigned randomized identifiers. A senior orthopedic physician reviewed the films and measured the ulnar deviation angle, radial height, palmar inclination angle, intra-articular step, and intra-articular gap for each case on the hospital's imaging system. Based on the reduction standard for distal radius fractures, cases were divided into reduction group and non-reduction group. Then, the data were sequentially imported into a human-computer interaction intelligent software, where a junior orthopedic physician analyzed the same radiological parameters, categorized cases, and measured fracture details. The categorization results from the software were consistent with manual classifications (6 reduction cases and 8 non-reduction cases). For non-reduction cases, the software performed further analyses, including bone segmentation and fracture recognition, generating 8 diagnostic reports containing fracture recognition information. For the 6 reduction cases, the senior and junior orthopedic physicians independently analyzed the data on the hospital's imaging system and the AI software, respectively. Bone segments requiring reduction were identified, verified by two senior physicians, and measured for displacement and rotation along the X (inward and outward), Z (front and back), and Y (up and down) axes. The AI software generated comprehensive diagnostic reports for these cases, which included all measurements and fracture recognition details.
RESULTS:
Both the manual and AI software methods consistently categorized the 14 cases into 6 reduction and 8 non-reduction groups, with identical data distributions. A paired sample t-test revealed no statistically significant differences (P>0.05) between the manual and software-based measurements for ulnar deviation angle, radial ulnar bone height, palmar inclination angle, intra-articular step, and joint space. In fracture recognition, the AI software correctly identified 10 C-type fractures and 4 B-type fractures. For the 6 reduction cases, a total of 24 bone fragments were analyzed across both methods. After verification, it was found that the bone fragments identified by the two methods were consistent. A paired sample t-tests revealed that the identified bone fragments and measured displacement and rotation angles along the X, Y, and Z axes were consistent between the two methods. No statistically significant differences(P>0.05) were found between manual and software measurements for these parameters.
CONCLUSION
Human-computer interaction software employing AI technology demonstrated comparable accuracy to manual measurement in identifying and locating type C1 distal radius fractures on CT imaging.
Humans
;
Male
;
Female
;
Radius Fractures/surgery*
;
Middle Aged
;
Adult
;
Aged
;
Aged, 80 and over
;
Tomography, X-Ray Computed/methods*
;
Retrospective Studies
;
Software
;
Wrist Fractures
3.Analysis of risk factors, pathogenic bacteria characteristics, and drug resistance of postoperative surgical site infection in adults with limb fractures.
Yan-Jun WANG ; Zi-Hou ZHAO ; Shuai-Kun LU ; Guo-Liang WANG ; Shan-Jin MA ; Lin-Hu WANG ; Hao GAO ; Jun REN ; Zhong-Wei AN ; Cong-Xiao FU ; Yong ZHANG ; Wen LUO ; Yun-Fei ZHANG
Chinese Journal of Traumatology 2025;28(4):241-251
PURPOSE:
We carried out the study aiming to explore and analyze the risk factors, the distribution of pathogenic bacteria, and their antibiotic-resistance characteristics influencing the occurrence of surgical site infection (SSI), to provide valuable assistance for reducing the incidence of SSI after traumatic fracture surgery.
METHODS:
A retrospective case-control study enrolling 3978 participants from January 2015 to December 2019 receiving surgical treatment for traumatic fractures was conducted at Tangdu Hospital of Air Force Medical University. Baseline data, demographic characteristics, lifestyles, variables related to surgical treatment, and pathogen culture were harvested and analyzed. Univariate analyses and multivariate logistic regression analyses were used to reveal the independent risk factors of SSI. A bacterial distribution histogram and drug-sensitive heat map were drawn to describe the pathogenic characteristics.
RESULTS:
Included 3978 patients 138 of them developed SSI with an incidence rate of 3.47% postoperatively. By logistic regression analysis, we found that variables such as gender (males) (odds ratio (OR) = 2.012, 95% confidence interval (CI): 1.235 - 3.278, p = 0.005), diabetes mellitus (OR = 5.848, 95% CI: 3.513 - 9.736, p < 0.001), hypoproteinemia (OR = 3.400, 95% CI: 1.280 - 9.031, p = 0.014), underlying disease (OR = 5.398, 95% CI: 2.343 - 12.438, p < 0.001), hormonotherapy (OR = 11.718, 95% CI: 6.269 - 21.903, p < 0.001), open fracture (OR = 29.377, 95% CI: 9.944 - 86.784, p < 0.001), and intraoperative transfusion (OR = 2.664, 95% CI: 1.572 - 4.515, p < 0.001) were independent risk factors for SSI, while, aged over 59 years (OR = 0.132, 95% CI: 0.059 - 0.296, p < 0.001), prophylactic antibiotics use (OR = 0.082, 95% CI: 0.042 - 0.164, p < 0.001) and vacuum sealing drainage use (OR = 0.036, 95% CI: 0.010 - 0.129, p < 0.001) were protective factors. Pathogens results showed that 301 strains of 38 species of bacteria were harvested, among which 178 (59.1%) strains were Gram-positive bacteria, and 123 (40.9%) strains were Gram-negative bacteria. Staphylococcus aureus (108, 60.7%) and Enterobacter cloacae (38, 30.9%) accounted for the largest proportion. The susceptibility of Gram-positive bacteria to Vancomycin and Linezolid was almost 100%. The susceptibility of Gram-negative bacteria to Imipenem, Amikacin, and Meropenem exceeded 73%.
CONCLUSION
Orthopedic surgeons need to develop appropriate surgical plans based on the risk factors and protective factors associated with postoperative SSI to reduce its occurrence. Meanwhile, it is recommended to strengthen blood glucose control in the early stage of admission and for surgeons to be cautious and scientific when choosing antibiotic therapy in clinical practice.
Humans
;
Surgical Wound Infection/epidemiology*
;
Male
;
Female
;
Risk Factors
;
Retrospective Studies
;
Middle Aged
;
Adult
;
Case-Control Studies
;
Fractures, Bone/surgery*
;
Aged
;
Drug Resistance, Bacterial
;
Logistic Models
;
Anti-Bacterial Agents/therapeutic use*
;
Incidence
;
Bacteria/drug effects*
4.Research of injury mapping relationship of lumbar spine in reclined occupants between anthropomorphic test devices and human body model.
Yu LIU ; Jing FEI ; Xin-Ming WAN ; Pei-Feng WANG ; Zhen LI ; Xiao-Ting YANG ; Lin-Wei ZHANG ; Zhong-Hao BAI
Chinese Journal of Traumatology 2025;28(2):130-137
PURPOSE:
To judge the injury mode and injury severity of the real human body through the measured values of anthropomorphic test devices (ATD) injury indices, the mapping relationship of lumbar injury between ATD and human body model (HBM) was explored.
METHODS:
Through the ATD model and HBM simulation, the mapping relationship of lumbar injury between the 2 subjects was explored. The sled environment consisted of a semi-rigid seat with an adjustable seatback angle and a 3-point seat belt system with a seatback-mounted D-ring. Three seatback recline states of 25°, 45°, and 65° were designed, and the seat pan angle was maintained at 15°. A 23 g, 47 km/h pulse was used. The validity of the finite element model of the sled was verified by the comparison of ATD simulation and test results. ATD model was the test device for human occupant restraint for autonomous vehicles (THOR-AV) dummy model and HBM was the total human model for safety (THUMS) v6.1. The posture of the 2 models was adjusted to adapt to the 3 seat states. The lumbar response of THOR-AV and the mechanical and biomechanical data on L1 - L5 vertebrae of THUMS were output, and the response relationship between THOR-AV and THUMS was descriptive statistically analyzed.
RESULTS:
Both THOR-AV and THUMS were submarined in the 65° seatback angle case. With the change of seatback angle, the lumbar spine axial compression force (Fz) of THOR-AV and THUMS changed in the similar trend. The maximum Fz ratio of THOR-AV to THUMS at 25° and 45° seatback angle cases were 1.6 and 1.7. The flexion moment (My) and the time when the maximum My occurred in the 2 subjects were very different. In particular, the form of moment experienced by the L1 - L5 vertebrae of THUMS also changed. The changing trend of My measured by THOR-AV over time can reflect the changing trend of maximum stress of L1 and L2 of THUMS.
CONCLUSION
The Fz of ATD and HBM presents a certain proportional relationship, and there is a mapping relationship between the 2 subjects on Fz. The mapping function can be further clarified by applying more pulses and adopting more seatback angles. It is difficult to map My directly because they are very different in ATD and HBM. The My of ATD and stress of HBM lumbar showed a similar change trend over time, and there may be a hidden mapping relationship.
Humans
;
Lumbar Vertebrae/injuries*
;
Finite Element Analysis
;
Biomechanical Phenomena
;
Manikins
;
Spinal Injuries/physiopathology*
6.Pathogenicity and Transcriptomic Profiling Revealed Activation of Apoptosis and Pyroptosis in Brain of Mice Infected with the Beta Variant of SARS-CoV-2.
Han LI ; Bao Ying HUANG ; Gao Qian ZHANG ; Fei YE ; Li ZHAO ; Wei Bang HUO ; Zhong Xian ZHANG ; Wen WANG ; Wen Ling WANG ; Xiao Ling SHEN ; Chang Cheng WU ; Wen Jie TAN
Biomedical and Environmental Sciences 2025;38(9):1082-1094
OBJECTIVE:
Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection frequently develop central nervous system damage, yet the mechanisms driving this pathology remain unclear. This study investigated the primary pathways and key factors underlying brain tissue damage induced by the SARS-CoV-2 beta variant (lineage B.1.351).
METHODS:
K18-hACE2 and C57BL/6 mice were intranasally infected with the SARS-CoV-2 beta variant. Viral replication, pathological phenotypes, and brain transcriptomes were analyzed. Gene Ontology (GO) analysis was performed to identify altered pathways. Expression changes of host genes were verified using reverse transcription-quantitative polymerase chain reaction and Western blot.
RESULTS:
Pathological alterations were observed in the lungs of both mouse strains. However, only K18-hACE2 mice exhibited elevated viral RNA loads and infectious titers in the brain at 3 days post-infection, accompanied by neuropathological injury and weight loss. GO analysis of infected K18-hACE2 brain tissue revealed significant dysregulation of genes associated with innate immunity and antiviral defense responses, including type I interferons, pro-inflammatory cytokines, Toll-like receptor signaling components, and interferon-stimulated genes. Neuroinflammation was evident, alongside activation of apoptotic and pyroptotic pathways. Furthermore, altered neural cell marker expression suggested viral-induced neuroglial activation, resulting in caspase 4 and lipocalin 2 release and disruption of neuronal molecular networks.
CONCLUSION
These findings elucidate mechanisms of neuropathogenicity associated with the SARS-CoV-2 beta variant and highlight therapeutic targets to mitigate COVID-19-related neurological dysfunction.
Animals
;
COVID-19/genetics*
;
Mice
;
Brain/metabolism*
;
Apoptosis
;
Mice, Inbred C57BL
;
SARS-CoV-2/physiology*
;
Pyroptosis
;
Gene Expression Profiling
;
Transcriptome
;
Male
;
Female
7.Associations of Genetic Risk and Physical Activity with Incident Chronic Obstructive Pulmonary Disease: A Large Prospective Cohort Study.
Jin YANG ; Xiao Lin WANG ; Wen Fang ZHONG ; Jian GAO ; Huan CHEN ; Pei Liang CHEN ; Qing Mei HUANG ; Yi Xin ZHANG ; Fang Fei YOU ; Chuan LI ; Wei Qi SONG ; Dong SHEN ; Jiao Jiao REN ; Dan LIU ; Zhi Hao LI ; Chen MAO
Biomedical and Environmental Sciences 2025;38(10):1194-1204
OBJECTIVE:
To investigate the relationship between physical activity and genetic risk and their combined effects on the risk of developing chronic obstructive pulmonary disease.
METHODS:
This prospective cohort study included 318,085 biobank participants from the UK. Physical activity was assessed using the short form of the International Physical Activity Questionnaire. The participants were stratified into low-, intermediate-, and high-genetic-risk groups based on their polygenic risk scores. Multivariate Cox regression models and multiplicative interaction analyses were used.
RESULTS:
During a median follow-up period of 13 years, 9,209 participants were diagnosed with chronic obstructive pulmonary disease. For low genetic risk, compared to low physical activity, the hazard ratios ( HRs) for moderate and high physical activity were 0.853 (95% confidence interval [ CI]: 0.748-0.972) and 0.831 (95% CI: 0.727-0.950), respectively. For intermediate genetic risk, the HRs were 0.829 (95% CI: 0.758-0.905) and 0.835 (95% CI: 0.764-0.914), respectively. For participants with high genetic risk, the HRs were 0.809 (95% CI: 0.746-0.877) and 0.818 (95% CI: 0.754-0.888), respectively. A significant interaction was observed between genetic risk and physical activity.
CONCLUSION
Moderate or high levels of physical activity were associated with a lower risk of developing chronic obstructive pulmonary disease across all genetic risk groups, highlighting the need to tailor activity interventions for genetically susceptible individuals.
Humans
;
Pulmonary Disease, Chronic Obstructive/epidemiology*
;
Exercise
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Aged
;
Genetic Predisposition to Disease
;
Risk Factors
;
United Kingdom/epidemiology*
;
Incidence
;
Adult
8.Current situation of in-flight bladder relief device for US fighter pilots and implications for Chinese PLA
Xiao LUO ; Xiao-Li ZHANG ; Fei CHANG ; Fei-Fei WU ; Fang-Hu ZHONG
Chinese Medical Equipment Journal 2024;45(6):71-76
The whole developing history of the in-flight bladder relief device for US fighter pilots from the first generation to the third generation was introduced.The optimized design of the third-generation product was described in terms of male use and female use.It's pointed out the US Air Force developed the in-flight bladder relief device with the mode of integration and innovation,the idea closely following the troops'needs and the key technology upgrading thought introducing the newest achievements,and references were provided for the technical improvement of this type of device for the PLA.[Chinese Medical Equipment Journal,2024,45(6):71-76]
9.D-shant atrial shunt device implantable in patients with severe pulmonary hypertension and right heart failure:one case report and literature review
Shu-Na XIAO ; Wen-Jie GAO ; Xiao-Ke SHANG ; Chang-Dong ZHANG ; Yu-Cheng ZHONG ; Ying ZHI ; Lin-Li QIU ; Yan-Fei DONG ; Yan HE ; Wei TIAN ; Wen-Wen TANG
Chinese Journal of Interventional Cardiology 2024;32(8):472-477
To evaluate the effectiveness and safety of implantable D-shant atrial shunt device in patients with severe pulmonary arterial hypertension(PAH)and right heart failure.A 53-year-old female patient diagnosed with severe idiopathic PAH and right heart failure,her WHO FC grade was Ⅳ.The right heart catheter and implantation of D-shant atrial shunt device were performed under local anesthesia on November 30,2021.A 6 mm×4 cm peripheral artery balloon was selected to dilate the atrial septum and a D-shant atrial shunt device with a fixed 4 mm diameter orifice was implanted into the heart.The clinical symptoms and hemodynamics of the patient was improved after the intervention.Implantation of atrial shunt device as a palliative therapy to established a right to left shunt is another strategy for treating patients with severe PAH in late period,which has good effectiveness and safety.It could be the last replacement therapy to improve symptoms and prolonged lives to drug resistant and severe PAH patients.
10.A Novel Trifluoromethyl Quinazoline Compound Inhibits Drug-resistant Glioblastoma Cells Proliferation
Xiao-Zhong CHEN ; Shi-Nan WEI ; Heng LUO ; Peng ZHANG ; Ping SUN ; Bao-Fei SUN
Chinese Journal of Biochemistry and Molecular Biology 2024;40(9):1250-1261
The current treatment of glioma is facing drug resistance,which limits the efficacy of traditional chemotherapy drugs.This study aims to explore the potential mechanisms of the trifluoromethylquinazoline compound(KZL204)against glioma.Through the Cell Counting Kit-8(CCK-8)assay,we found that KZL204 significantly inhibits the growth of drug-resistant cancer cells,with a 48-hour half-maximal inhibitory concentration(IC50)of 3.63±0.38 μmol/L,which is significantly better than the positive control drug temozolomide(TMZ)(IC50 value of 81.67±5.49 μmol/L).Additionally,flow cytometry analysis showed that KZL204 treatment significantly increased the apoptosis rate of drug-resistant tumor cells and arrested the cell cycle at the G2/M phase.At the same time,the Transwell assay confirmed the inhibitory effect of KZL204 on the migration and invasion of drug-resistant cancer cells.Transcriptome analysis revealed 2 435 differentially expressed genes in drug-resistant cancer cells treated with KZL204,of which 1 320 were upregulated,and 1 115 were downregulated.KEGG and GO enrichment analysis showed that these differential genes were significantly enriched in apoptosis-related signaling pathways.Further bioinformatics prediction and Venn diagram analysis identified 35 potential core targets,with the PI3K-AKT signaling pathway being the most significant among the differentially expressed genes.Quantitative real-time PCR(RT-qPCR)experiments confirmed the downregulating effects of KZL204 on genes such as CREB3L1,CSF1,CXCL5,BCL3,and the upregulating effects on genes like FOS,LT A,PTGS2,MAP2K3.Immunoblotting experiments at the protein level also confirmed the impact of KZL204 on the expression of apoptotic proteins,including the upregulation of Bax,cleaved Caspase-3 protein,and the downregulation ofAKT,Bcl-2,Caspase-3,and Caspase-8 protein expression.In summary,KZL204 significantly inhibits the growth and metastasis of drug-resistant glioblastoma and induces apoptosis and cell cycle arrest by regulating the PI3K-AKT and apoptosis-related signaling pathways,demonstrating its potential as a candidate drug against drug-resistant glioma.

Result Analysis
Print
Save
E-mail