1.Allogeneic lung transplantation in miniature pigs and postoperative monitoring
Yaobo ZHAO ; Ullah SALMAN ; Kaiyan BAO ; Hua KUI ; Taiyun WEI ; Hongfang ZHAO ; Xiaoting TAO ; Xinzhong NING ; Yong LIU ; Guimei ZHANG ; He XIAO ; Jiaoxiang WANG ; Chang YANG ; Feiyan ZHU ; Kaixiang XU ; Kun QIAO ; Hongjiang WEI
Organ Transplantation 2026;17(1):95-105
Objective To explore the feasibility and reference value of allogeneic lung transplantation and postoperative monitoring in miniature pigs for lung transplantation research. Methods Two miniature pigs (R1 and R2) underwent left lung allogeneic transplantation. Complement-dependent cytotoxicity tests and blood cross-matching were performed before surgery. The main operative times and partial pressure of arterial oxygen (PaO2) after opening the pulmonary artery were recorded during surgery. Postoperatively, routine blood tests, biochemical blood indicators and inflammatory factors were detected, and pathological examinations of multiple organs were conducted. Results The complement-dependent cytotoxicity test showed that the survival rate of lymphocytes between donors and recipients was 42.5%-47.3%, and no agglutination reaction occurred in the cross-matching. The first warm ischemia times of D1 and D2 were 17 min and 10 min, respectively, and the cold ischemia times were 246 min and 216 min, respectively. Ultimately, R1 and R2 survived for 1.5 h and 104 h, respectively. Postoperatively, in R1, albumin (ALB) and globulin (GLB) decreased, and alanine aminotransferase increased; in R2, ALB, GLB and aspartate aminotransferase all increased. Urea nitrogen and serum creatinine increased in both recipients. Pathological results showed that in R1, the transplanted lung had partial consolidation with inflammatory cell infiltration, and multiple organs were congested and damaged. In R2, the transplanted lung had severe necrosis with fibrosis, and multiple organs had mild to moderate damage. The expression levels of interleukin-1β and interleukin-6 increased in the transplanted lungs. Conclusions The allogeneic lung transplantation model in miniature pigs may systematically evaluate immunological compatibility, intraoperative function and postoperative organ damage. The data obtained may provide technical references for subsequent lung transplantation research.
2.Development of an intervention program to enhance communication and collaboration in multidisciplinary teams of nurses in stroke rehabilitation wards based on a shared mental model
Xiaohe WANG ; Lu ZHANG ; Shuqin XIAO
Chinese Journal of Rehabilitation Theory and Practice 2026;32(1):101-109
ObjectiveTo develop an intervention program based on a shared mental model to enhance the communication and collaboration skills of nurses in multidisciplinary teams in stroke rehabilitation wards. MethodsUsing the shared mental model as the theoretical framework, the intervention program was preliminarily drafted through literature review to establish a theoretical foundation and qualitative research to identify clinical needs. The Delphi method was then used to revise and refine the program. ResultsBased on literature review and qualitative research, intervention elements were extracted across four dimensions: equipment, tasks, team interaction and team members, forming the initial draft of the intervention program. Two rounds of consultations were conducted with 18 experts, achieving a 100% valid response rate in both rounds. The expert authority coefficients were 0.87 and 0.90, respectively. In the second round of consultation, the variation coefficients for the importance scores of each item ranged from 0 to 0.20 (overall Kendall's W = 0.272, P < 0.001), and the variation coefficients for feasibility scores ranged from 0 to 0.21 (overall Kendall's W = 0.275, P < 0.001). The final intervention program included five first-level indicators, eight second-level indicators, and 29 third-level indicators, aligning with the four dimensions of the shared mental model. ConclusionThe intervention program was developed to enhance the communication and collaboration skills of nurses in multidisciplinary teams in stroke rehabilitation wards based on the shared mental model.
3.Construction and efficacy verification of an intelligent pharmaceutical Q&A platform based on AI hallucination-suppression
Zhengwang WEN ; Jiaying WANG ; Wenyue YANG ; Haoyu YANG ; Xiao MA ; Yun LIU
China Pharmacy 2026;37(2):226-231
OBJECTIVE To construct an intelligent pharmaceutical Q&A platform for precision medication with low “artificial intelligence (AI) hallucination”, aiming to enhance the accuracy, consistency, and traceability of medication consultations. METHODS Medication package inserts were batch-processed and converted into structured data through Python programming to build a local pharmaceutical knowledge base. The retrieval and question-answering processes were designed based on large language models, and system integration and localized deployment were completed on Dify platform. By designing typical clinical medication questions and comparing the output of the intelligent pharmaceutical Q&A platform with the online version of DeepSeek across dimensions such as peak time retrieval, half-life, and dosage adjustment reasoning for patients with renal impairment, the accuracy and reliability of its retrieval and reasoning results were evaluated. RESULTS The intelligent pharmaceutical Q&A platform, constructed based on local drug package inserts, achieved 100% accuracy in retrieval and reasoning for peak time, half-life, and dosage adjustment schemes. In comparison, the online version of DeepSeek demonstrated accuracies of 30%(6/20), 50%(10/20), and 38%(23/60) across these three dimensions, respectively. CONCLUSIONS The constructed intelligent pharmaceutical Q&A platform is capable of accurately retrieving and extracting information from the local knowledge base based on clinical inquiries, thereby avoiding the occurrence of AI hallucinations and providing reliable medication decision support for healthcare professionals.
4.Pharmacodynamic Substance Basis and Mechanisms of Shangkeling Spray on Knee Osteoarthritis
Pengbo GUO ; Changhao XIAO ; Fei XIA ; Chong QIU ; Jigang WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):206-216
ObjectiveTo analyze the pharmacodynamic substance basis of Shangkeling Spray and its potential mechanisms in intervening knee osteoarthritis (KOA) using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS), network pharmacology, and molecular docking technology. MethodsUPLC-MS was used to identify the chemical components of Shangkeling Spray. Pharmacokinetic properties were employed to screen potential active ingredients. Network pharmacology methods were utilized to collect potential targets of these ingredients and the pathological gene set of KOA. An "active ingredient-disease" target network was constructed using databases such as STRING. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed using clusterProfiler. Libraries including NumPy were employed to calculate shortest path lengths to identify dominant pharmacodynamic links. Core gene clusters were identified using MCODE, validated through the Gene Expression Omnibus (GEO) database, and molecular docking was performed between key active ingredients and core targets. ResultsA total of 322 and 314 chemical components were identified under positive and negative ion modes, respectively, with 410 components in total after de-duplication, mainly including flavonoids, coumarins, terpenoids, organic acids, and alkaloids. Analysis of the "active ingredient-disease" network identified "development and regeneration", "cell growth and death", "immune system", and "nervous system" as the dominant pharmacodynamic links of Shangkeling Spray in the treatment of KOA. Molecular docking showed that key active ingredients, such as bletillin A, formononetin, morin, oxymatrine, aconitine, gallic acid, curdione, apigenin, naringenin, and oleanolic acid, tightly bound to functional domains of 10 key targets including Jun proteins(JUN), interleukin-6 (IL-6), protein kinase B1 (Akt1), Caspase-3, nuclear transcription factor-κB subunit p65(RELA), nuclear factor-kappaB1(NF-κB1), Cyclin D1, mammalian target of rapamycin(mTOR), tumor necrosis factor (TNF), and Fos proto-oncogene protein (FOS). These interactions synergistically regulated the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR-related signaling axis and nervous system-related pathways, mediating cartilage repair, reducing inflammation and pain, and improving KOA. ConclusionThis study preliminarily clarifies the pharmacodynamic substance basis of Shangkeling Spray and suggests that its main active ingredients may improve KOA by synergistically regulating the PI3K/Akt/mTOR-related pathways, providing a reference for subsequent exploration of its substance benchmark and mechanism of action.
5.Clinical Advantages of Traditional Chinese Medicine in Treatment of Childhood Simple Obesity: Insights from Expert Consensus
Qi ZHANG ; Yingke LIU ; Xiaoxiao ZHANG ; Guichen NI ; Heyin XIAO ; Junhong WANG ; Liqun WU ; Zhanfeng YAN ; Kundi WANG ; Jiajia CHEN ; Hong ZHENG ; Xinying GAO ; Liya WEI ; Qiang HE ; Qian ZHAO ; Huimin SU ; Zhaolan LIU ; Dafeng LONG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):238-245
Childhood simple obesity has become a significant public health issue in China. Modern medicine primarily relies on lifestyle interventions and often suffers from poor long-term compliance, while pharmacological options are limited and associated with potential adverse effects. Traditional Chinese Medicine (TCM) has a long history in the prevention and management of this condition, demonstrating eight distinct advantages, including systematic theoretical foundation, diversified therapeutic approaches, definite therapeutic efficacy, high safety profile, good patient compliance, comprehensive intervention strategies, emphasis on prevention, and stepwise treatment protocols. Additionally, TCM is characterized by six distinctive features: the use of natural medicinal substances, non-invasive external therapies, integration of medicinal dietetics, simple exercise regimens, precise syndrome differentiation, and diverse dosage forms. By combining internal and external treatments, TCM facilitates individualized regimen adjustment and holistic regulation, demonstrating remarkable effects in improving obesity-related metabolic indicators, regulating constitutional imbalance, and promoting healthy behaviors. However, challenges remain, such as inconsistent operational standards, insufficient high-quality clinical evidence, and a gap between basic research and clinical application. Future efforts should focus on accelerating the standardization of TCM diagnosis and treatment, conducting multicenter randomized controlled trials, and fostering interdisciplinary integration, so as to enhance the scientific validity and international recognition of TCM in the prevention and treatment of childhood obesity.
6.Research progress on antimicrobial peptides against methicillin-resistant Staphylococcus aureus
Yuxuan WANG ; Weichang GUO ; Cheng CHEN ; Yao LUO ; Yaxiong XIAO ; Jiangtao LI
China Pharmacy 2025;36(5):636-640
Staphylococcus aureus is a Gram-positive bacterium with strong pathogenicity. With the widespread use of antibiotics, its multi-drug resistance has gradually increased. Among them, methicillin-resistant S. aureus (MRSA) is one of the main pathogens of hospital and community infections. Antimicrobial peptides are short-chain peptides with good antibacterial effects and low drug resistance, which have been widely studied in recent years. This study summarizes the mechanism of action of antimicrobial peptides and related study on antimicrobial peptides against MRSA from different sources. It is found that the mechanisms of action of antimicrobial peptides include targeting bacterial cell membranes, bacterial cells, and bacterial cell walls, etc. Besides isolating antimicrobial peptides with anti-MRSA activity from animals, plants, and microorganisms, antimicrobial peptides can also be obtained through synthetic methods. Among them, GHa-derived peptides from animal sources, Ib-AMP4 from plant sources, Ph-SA from microbial sources, the synthetic peptide LLKLLLKLL-NH2, and so on, due to their effective antibacterial activity, rapid bactericidal speed, and low toxicity, are promising candidates for anti-MRSA drugs.
7.Magnetic nanomaterials and magnetic field effects accelerate bone injury repair
Fang XIAO ; Lei HUANG ; Lin WANG
Chinese Journal of Tissue Engineering Research 2025;29(4):827-838
BACKGROUND:Magnetic nanomaterials have biological activities such as promoting osteogenic differentiation of stem cells and inhibiting osteoclast formation,and can effectively promote the healing of injured bone tissue under the synergistic effect of magnetic fields.They have a very broad application prospect in bone injury repair. OBJECTIVE:To review the mechanism of magnetic nanomaterials and magnetic fields promoting bone repair,as well as their research progress in the field of bone injury repair. METHODS:Relevant literature search was conducted in PubMed and Web of Science databases with the search terms"magnetic nanomaterials,magnetic field,bone repair,bone tissue engineering,stem cell,osteoblast,osteoclast."The time limit of literature search was from 2003 to 2023,which was screened and analyzed.Some classic articles were manually retrieved,and 98 articles were finally included for analysis. RESULTS AND CONCLUSION:(1)Magnetic nanomaterials have biological effects such as promoting osteoblast differentiation,inhibiting osteoclast formation and regulating the immune microenvironment.In addition,magnetic nanomaterials can regulate the physicochemical properties of tissue engineering scaffolds,such as mechanical properties and surface morphology,and endowed with magnetic properties,which is conducive to the regulation of the adhesion,proliferation and osteogenic differentiation of stem cells.(2)The magnetic field has the ability to regulate multiple cell signaling pathways to promote osteoblast differentiation,inhibit osteoclast formation,stimulate angiogenesis and other biological effects,thus accelerating the healing of damaged bone tissue.(3)The joint application of magnetic nanomaterials and magnetic field accelerates the repair of bone damage by activating mechanotransduction,increasing the content of intracellular magnetic nanoparticles,and enhancing the effect of micro-magnetic field,which provides a new idea for the research of bone tissue engineering.(4)Magnetic field has demonstrated definite efficacy in the treatment of clinical fractures,osteoporosis,and osteoarthritis diseases,which is beneficial for bone tissue growth,reducing bone loss,alleviating pain,and improving the quality of life of patients.(5)Magnetic nanomaterials and magnetic fields have great potential for application in bone damage repair and regeneration,but the interaction mechanism between magnetic nanomaterials,magnetic fields,and cells has not been fully elucidated.Moreover,the key parameters of magnetic fields that regulate intracellular molecular events,including the type,intensity,frequency,duration,and mode of the magnetic field,as well as the precise biological effects of a specific magnetic field on osteoblasts and the underlying mechanisms,have yet to be defined.(6)Further attention needs to be paid to the effects on osteoclasts,nerves,blood vessels,and immune cells in the microenvironment of damaged tissues.Finally,the safety of magnetic materials for human use is yet to be systematically studied in terms of their distribution,metabolism,and acute and chronic toxicities.
8.Mitophagy regulates bone metabolism
Hanmin ZHU ; Song WANG ; Wenlin XIAO ; Wenjing ZHANG ; Xi ZHOU ; Ye HE ; Wei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1676-1683
BACKGROUND:In recent years,numerous studies have shown that autophagy and mitophagy play an important role in the regulation of bone metabolism.Under non-physiological conditions,mitophagy breaks the balance of bone metabolism and triggers metabolism disorders,which affect osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells,etc. OBJECTIVE:To summarize the mechanism of mitophagy in regulating bone metabolic diseases and its application in clinical treatment. METHODS:PubMed,Web of Science,CNKI,WanFang and VIP databases were searched by computer using the keywords of"mitophagy,bone metabolism,osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells"in English and Chinese.The search time was from 2008 to 2023.According to the inclusion criteria,90 articles were finally included for review and analysis. RESULTS AND CONCLUSION:Mitophagy promotes the generation of osteoblasts through SIRT1,PINK1/Parkin,FOXO3 and PI3K signaling pathways,while inhibiting osteoclast function through PINK1/Parkin and SIRT1 signaling pathways.Mitophagy leads to bone loss by increasing calcium phosphate particles and tissue protein kinase K in bone tissue.Mitophagy improves the function of chondrocytes through PINK1/Parkin,PI3K/AKT/mTOR and AMPK signaling pathways.Modulation of mitophagy shows great potential in the treatment of bone diseases,but there are still some issues to be further explored,such as different stages of drug-activated mitophagy,and the regulatory mechanisms of different signaling pathways.
9.Action mechanisms and application pathways of biomaterials in promoting corneal alkali burn repair
Hui XIAO ; Dongyan LI ; Jing JI ; Lizhen WANG
Chinese Journal of Tissue Engineering Research 2025;29(10):2162-2170
BACKGROUND:Traditional treatments for corneal alkali burns are limited,especially in controlling inflammation,preventing neovascularization,and inhibiting corneal scarring.Natural,synthetic,or composite materials provide a wide range of treatment options.However,the mechanism by which biomaterials promote corneal alkali burn repair has not yet been systematically understood. OBJECTIVE:To summarize the current research on biomaterials in promoting corneal alkali burn repair in and outside China,and review the mechanism and application of biomaterials in repairing corneal alkali burn. METHODS:The first author searched"cornea,alkali burn,amniotic membrane,hyaluronic acid,collagen,chitosan,polymer materials"as Chinese keywords and"amniotic membrane,hyaluronic acid,collagen,chitosan,polymer,cornea,alkali burn"as English keywords in PubMed,Web of Science,CNKI,and WanFang databases.According to inclusion and exclusion criteria,76 eligible articles were finally included for review. RESULTS AND CONCLUSION:(1)In the field of corneal alkali burn repair,biomaterials such as amniotic membrane,hyaluronic acid,collagen,chitosan,and degradable polymer materials have been widely studied and applied.Each of these biomaterials has its own characteristics,advantages,and disadvantages,and stands out in different aspects.(2)First and foremost,amniotic membranes are considered one of the most promising biomaterials due to their abundance of bioactive factors.They are biocompatible and can regulate the corneal inflammatory response.However,there are issues with donor shortages and susceptibility to infectious diseases.(3)Hyaluronic acid has good moisturizing properties and biocompatibility,and is able to improve the survival rate of corneal cells and increase corneal transparency.(4)The good biocompatibility and scaffold structure of collagen enable the promotion of corneal cell adhesion and proliferation,as well as the reconstruction of corneal tissue structure.(5)Chitosan is recognized for its good biocompatibility and degradability,making it suitable as a carrier for drug delivery and cell transplantation.(6)Degradable polymer materials have good controllability over degradation and can provide a good support and delivery platform for the repair of corneal alkali burns,but further research is needed on their stability and biocompatibility.(7)Overall,there is currently no single biomaterial that can completely address the repair problem of corneal alkali burns,and each biomaterial has its own specific application scenarios and limitations.(8)Future research directions should focus on further improving the properties and structure of biomaterials,exploring more effective combination applications,and deeply understanding the interaction mechanism between biomaterials and corneal tissue,in order to enhance the therapeutic effect of corneal alkali burns and the quality of life of patients.
10.Machine learning identification of LRRC15 and MICB as immunodiagnostic markers for rheumatoid arthritis
Yanhu TIAN ; Xinan HUANG ; Tongtong GUO ; Rusitanmu·Ahetanmu ; Jiangmiao LUO ; Yao XIAO ; Chao WANG ; Weishan WANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2411-2420
BACKGROUND:Rheumatoid arthritis is a chronic autoimmune disease.Early diagnosis is crucial for preventing disease progression and for effective treatment.Therefore,it is of significance to investigate the diagnostic characteristics and immune cell infiltration of rheumatoid arthritis. OBJECTIVE:Based on the Gene Expression Omnibus(GEO)database,to screen potential diagnostic markers of rheumatoid arthritis using machine learning algorithms and to investigate the relationship between the diagnostic characteristics of rheumatoid arthritis and immune cell infiltration in this pathology. METHODS:The gene expression datasets of synovial tissues related to rheumatoid arthritis were obtained from the GEO database.The data sets were merged using a batch effect removal method.Differential expression analysis and functional correlation analysis of genes were performed using R software.Bioinformatics analysis and three machine learning algorithms were used for the extraction of disease signature genes,and key genes related to rheumatoid arthritis were screened.Furthermore,we analyzed immune cell infiltration on all differentially expressed genes to examine the inflammatory state of rheumatoid arthritis and investigate the correlation between their diagnostic characteristics and infiltrating immune cells. RESULTS AND CONCLUSION:In both rheumatoid arthritis and normal synovial tissues,we identified 179 differentially expressed genes,with 124 genes up-regulated and 55 genes down-regulated.Enrichment analysis revealed a significant correlation between rheumatoid arthritis and immune response.Three machine learning algorithms identified LRRC15 and MICB as potential biomarkers of rheumatoid arthritis.LRRC15(area under the curve=0.964,95%confidence interval:0.924-0.992)and MICB(area under the curve=0.961,95%confidence interval:0.923-0.990)demonstrated strong diagnostic performance on the validation dataset.The infiltration of 13 types of immune cells was altered,with macrophages being the most affected.In rheumatoid arthritis,the majority of proinflammatory pathways in immune cell function were activated.Immunocorrelation analysis revealed that LRRC15 and MICB had the strongest correlation with M1 macrophages.To conclude,this study identified LRRC15 and MICB as potential diagnostic markers for rheumatoid arthritis,with strong diagnostic performance and significant correlation with immune cell infiltration.Machine learning and bioinformatics analysis deepened the understanding of immune infiltration in rheumatoid arthritis and provided new ideas for the diagnosis and treatment of rheumatoid arthritis.

Result Analysis
Print
Save
E-mail