1.Pharmacological inhibition of BAP1 recruits HERC2 to competitively dissociate BRCA1-BARD1, suppresses DNA repair and sensitizes CRC to radiotherapy.
Xin YUE ; Tingyu LIU ; Xuecen WANG ; Weijian WU ; Gesi WEN ; Yang YI ; Jiaxin WU ; Ziyang WANG ; Weixiang ZHAN ; Ruirui WU ; Yuan MENG ; Zhirui CAO ; Liyuan LE ; Wenyan QIU ; Xiaoyue ZHANG ; Zhenyu LI ; Yong CHEN ; Guohui WAN ; Xianzhang BU ; Zhenwei PENG ; Ran-Yi LIU
Acta Pharmaceutica Sinica B 2023;13(8):3382-3399
Radiotherapy is widely used in the management of advanced colorectal cancer (CRC). However, the clinical efficacy is limited by the safe irradiated dose. Sensitizing tumor cells to radiotherapy via interrupting DNA repair is a promising approach to conquering the limitation. The BRCA1-BARD1 complex has been demonstrated to play a critical role in homologous recombination (HR) DSB repair, and its functions may be affected by HERC2 or BAP1. Accumulated evidence illustrates that the ubiquitination-deubiquitination balance is involved in these processes; however, the precise mechanism for the cross-talk among these proteins in HR repair following radiation hasn't been defined. Through activity-based profiling, we identified PT33 as an active entity for HR repair suppression. Subsequently, we revealed that BAP1 serves as a novel molecular target of PT33 via a CRISPR-based deubiquitinase screen. Mechanistically, pharmacological covalent inhibition of BAP1 with PT33 recruits HERC2 to compete with BARD1 for BRCA1 interaction, interrupting HR repair. Consequently, PT33 treatment can substantially enhance the sensitivity of CRC cells to radiotherapy in vitro and in vivo. Overall, these findings provide a mechanistic basis for PT33-induced HR suppression and may guide an effective strategy to improve therapeutic gain.
2.A multidimensional platform of patient-derived tumors identifies drug susceptibilities for clinical lenvatinib resistance.
Lei SUN ; Arabella H WAN ; Shijia YAN ; Ruonian LIU ; Jiarui LI ; Zhuolong ZHOU ; Ruirui WU ; Dongshi CHEN ; Xianzhang BU ; Jingxing OU ; Kai LI ; Xiongbin LU ; Guohui WAN ; Zunfu KE
Acta Pharmaceutica Sinica B 2024;14(1):223-240
Lenvatinib, a second-generation multi-receptor tyrosine kinase inhibitor approved by the FDA for first-line treatment of advanced liver cancer, facing limitations due to drug resistance. Here, we applied a multidimensional, high-throughput screening platform comprising patient-derived resistant liver tumor cells (PDCs), organoids (PDOs), and xenografts (PDXs) to identify drug susceptibilities for conquering lenvatinib resistance in clinically relevant settings. Expansion and passaging of PDCs and PDOs from resistant patient liver tumors retained functional fidelity to lenvatinib treatment, expediting drug repurposing screens. Pharmacological screening identified romidepsin, YM155, apitolisib, NVP-TAE684 and dasatinib as potential antitumor agents in lenvatinib-resistant PDC and PDO models. Notably, romidepsin treatment enhanced antitumor response in syngeneic mouse models by triggering immunogenic tumor cell death and blocking the EGFR signaling pathway. A combination of romidepsin and immunotherapy achieved robust and synergistic antitumor effects against lenvatinib resistance in humanized immunocompetent PDX models. Collectively, our findings suggest that patient-derived liver cancer models effectively recapitulate lenvatinib resistance observed in clinical settings and expedite drug discovery for advanced liver cancer, providing a feasible multidimensional platform for personalized medicine.