2.Preparation and penetrating effect of the polyarginine-enhanced green fluorescence protein fusion protein.
Nan ZHANG ; Yin BAI ; Jingzhuang ZHAO ; Xianlong YE ; Wenfei WANG ; Guiping REN ; Deshan LI ; Yan JING
Chinese Journal of Biotechnology 2013;29(11):1644-1653
The aim of the study is to establish a platform to deliver therapeutic proteins into target cells through a polyarginine-based cell penetrating peptide. To facilitate the expression of therapeutic proteins, a pSUMO (Small Ubiquitin-like Modifier)-R9-EGFP (enhanced green fluorescence protein) prokaryotic expression vector was constructed. After induction, the fusion protein SUMO-R9-EGFP was efficiently expressed. To validate the cell penetrating ability of the fusion protein, HepG2 cells were incubated with the purified R9-EGFP or EGFP protein as control, internalization of the fluorescent proteins was examined by either flow cytometry or confocal microscopy. The result obtained by flow cytometry showed that the R9-EGFP fusion protein could efficiently penetrate into the HepG2 cells in a dose and time-dependent manner. In contrast, the fluorescence was barely detected in the HepG2 cells incubated with EGFP control. The fluorescence intensity of the R9-EGFP treated cells reached plateau phase after 1.5 h. The result obtained by confocal microscopy shows that R9-EGFP efficiently entered into the HepG2 cells and was exclusively located in the cytoplasm, whereas, no fluorescence was detected in the cells incubated with the EGFP control. The heparin inhibition experiment showed that heparin could inhibit penetrating effect of the R9-EGFP protein by about 50%, suggesting that the penetrating ability of the fusion protein is heparin-dependent. In summary, the study has established a platform to deliver therapeutic proteins into target cells through a polyarginine-based penetrating peptide.
Cell-Penetrating Peptides
;
biosynthesis
;
genetics
;
pharmacology
;
Genetic Vectors
;
genetics
;
Green Fluorescent Proteins
;
biosynthesis
;
genetics
;
Hep G2 Cells
;
Humans
;
Peptides
;
genetics
;
metabolism
;
Protein Transport
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
pharmacology
3.Improvement of yield and purity of human fibroblast growth factor-21.
Dan YU ; Xianlong YE ; Guiping REN ; Pengfei XU ; Shujie LI ; Zeshan NIU ; Deshan LI
Chinese Journal of Biotechnology 2014;30(4):658-668
Fibroblast growth factor -21 (FGF-21) is a recently discovered metabolic regulation factor, regulating glucose and lipid metabolism and increasing insulin sensitivity. FGF-21 is expected to be a potential anti-diabetic drug. Expression of FGF-21 as inclusion bodies has advantages for high yield and purity, but the bioactivity of the protein is almost totally lost after denature and renature. That is why FGF-21 is currently expressed in soluble form. As a result, the yield is considerably low. In this study, we used SUMO vector to express SUMO-human FGF-21 (SUMO-hFGF-21) in form of inclusion body. We optimized the culture conditions to increase the yield of the bioactive human fibroblast growth factor-21. We applied the hollow fiber membrane filtration column to enrich the bacteria, wash, denature and renature inclusion bodies. After affinity and gel filtration chromatography, we examined the hypoglycemic activity of FGF-21 by the glucose uptake assay in HepG2 cells. We also detected the blood glucose concentration of type 2 diabetic db/db model mice after short or long-term treatment. The results show that the yield of ihFGF-21 was 4 times higher than that of shFGF-21. The yield was 20 mg/L for ihFGF-21 vs. 6 mg/L for shFGF-21. The purity of ihFGF-21 was above 95%, while shFGF-21 was 90%. Compared with the traditional method of extracting inclusion bodies, the production cycle was about three times shortened by application of hollow fiber membrane filtration column technology, but the bioactivity did not significantly differ. This method provides an efficient and cost-effective strategy to the pilot and industrial production of hFGF-21.
Animals
;
Bacteria
;
metabolism
;
Diabetes Mellitus, Experimental
;
drug therapy
;
Disease Models, Animal
;
Fibroblast Growth Factors
;
biosynthesis
;
Genetic Vectors
;
Glucose
;
metabolism
;
Hep G2 Cells
;
Humans
;
Hypoglycemic Agents
;
isolation & purification
;
Inclusion Bodies
;
metabolism
;
Mice
;
Recombinant Fusion Proteins
;
biosynthesis
;
Small Ubiquitin-Related Modifier Proteins
;
biosynthesis
4.The long lasting effect of the murine fibroblast growth factor-21 on blood glucose control of diabetic animals.
Jingzhuang ZHAO ; Guopeng SUN ; Xianlong YE ; Jinnan LI ; Guiping REN ; Wenfei WANG ; Mingyao LIU ; Deshan LI
Acta Pharmaceutica Sinica 2013;48(3):352-8
Insulin is the most common medicine used for diabetic patients, unfortunately, its effective time is short, even the long-acting insulin cannot obtain a satisfactory effect. Fibroblast growth factor (FGF)-21 is a recently discovered glucose mediator and expected to be a potential anti-diabetic drug that does not rely on insulin. In this study, db/db mice were used as the type 2 diabetic model to examine whether mFGF-21 has the long-term blood lowering effect on the animal model. The results showed that mFGF-21 could stably maintain the blood glucose at normal level for a long-term in a dose-dependent manner. Administration of mFGF-21 once a day with three doses (0.125, 0.25 and 0.5 mg x kg(-1)) could maintain blood glucose of the model animals at normal level for at least 24 h. Administration of mFGF-21 every two days with the same doses could maintain blood glucose of the model animals at normal level for at least 48 h, although it took longer time for blood glucose to reach to normal level depending on doses used (twenty injections for 0.125 mg x kg(-1) and 0.25 mg x kg(-1) doses, ten injections for 0.5 mg x kg(-1) dose). Surprisingly, the blood glucose of the treated model animals still maintained at normal level for 24 h after the experiment terminated. Glycosylated hemoglobin level of the animals treated with mFGF-21, which represented long-term glucose status, decreased significantly compared to the control group and the insulin group. The results suggest that FGF-21 has potential to become a long-acting and potent anti-diabetic drug.
5.Comparative study of clinical and MRI features between intracranial solitary fibrous tumor/hemangiopericytoma and meningioma
Chunxiu JIANG ; Jianbin ZHU ; Tianyu ZOU ; Xianlong WANG ; Hao YU ; Yunyan REN ; Pei GUO ; Zhibo WEN
Chinese Journal of Medical Imaging Technology 2017;33(6):848-852
Objective To investigate the MRI features of intracranial solitary fibrous tumors/hemangiopericytomas (SFT/HPC),and to compare these findings with those of intracranial meningiomas.Methods The clinical features and MRI findings in 28 patients of intracranial SFT/HPC (SFT/HPC group)and 68 patients of meningiomas (meningiomas group) confirmed by operation and pathology were retrospectively analyzed.The indicators of two groups were compared.Results Shape of tumor,signal homogeneous,signal voids of vessel in tumor,hypointense signal nodules on T2WI and enhanded,cystic or necrosis in tumor,meningeal tail sign,changes of the nearby bone,sex,Ki-67% level,blood lose in surgery had significant differences between SFT/HPC group and meningiomas group (all P<0.05).Conclusion There are some differences between intracranial SFT/HPC and meningiomas.It is helpful in diagnosis and differential diagnosis through the comparative analysis of the imaging signs.
6.Effect of FGF-21 on learning and memory ability and antioxidant capacity in brain tissue of D-galactose-induced aging mice.
Yinhang YU ; Guiping REN ; Yaonan LIU ; Susu QU ; Fuliang BAI ; Tong ZHANG ; Wenfei WANG ; Guiyou TIAN ; Xianlong YE ; Deshan LI
Acta Pharmaceutica Sinica 2014;49(7):1000-6
This study aims to investigate the effects of fibroblast growth factor 21 (FGF-21) on learning and memory abilities and antioxidant capacity of D-galactose-induced aging mice. Kunming mice (37.1 +/- 0.62) g were randomly divided into normal control group, model group and FGF-21 high, medium and low dose groups (n = 8). Each group was injected in cervical part subcutaneously with D-galactose 180 mg x kg(-1) x d(-1) once a day for 8 weeks. At the same time, FGF-21-treated mice were administered with FGF-21 by giving subcutaneous injection in cervical part at the daily doses of 5, 2 and 1 mg x kg(-1) x d(-1). The normal control group was given with normal saline by subcutaneous injection in cervical part. At seventh week of the experiment, the learning and memory abilities of mice were determined by water maze and jumping stand tests. At the end of the experiment, the mice were sacrificed and the cells damage of hippocampus was observed by HE staining in each group. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and total antioxidant capacity (T-AOC) in the brain of mice were determined. The results showed that different doses of FGF-21 could reduce the time reaching the end (P < 0.01 or P < 0.05) and the number of touching blind side (P < 0.01 or P < 0.05) in the water maze comparing with the model group. It could also prolong the latency time (P < 0.05) and decrease the number of errors (P < 0.01 or P < 0.05) in the step down test. The result of HE staining showed that FGF-21 could significantly reduce brain cell damage in the hippocampus. The ROS and MDA levels of three different doses FGF-21 treatment group reduced significantly than that of the model group [(5.58 +/- 1.07), (7.78 +/- 1.92), (9.03 +/- 1.77) vs (12.75 +/- 2.02) pmol (DCF) x min(-1) x mg(-1), P < 0.01 or P < 0.05], [(2.92 +/- 0.71), (4.21 +/- 0.81), (4.41 +/- 0.97) vs (5.62 +/- 0.63) nmol x mg(-1) (protein), P < 0.01]. Comparing with the model group, the activities of SOD, GPx, CAT and T-AOC of the three different doses FGF-21 treatment groups were also improved in a dose-dependent manner. This study demonstrates that FGF-21 can ameliorate learning and memory abilities of D-galactose induced aging mice, improve the antioxidant abilities in brain tissue and delay brain aging. This finding provides a theoretical support for clinical application of FGF-21 as a novel therapeutics for preventing aging.
7.Therapeutic effect of fibroblast growth factor 21 on NAFLD in MSG-iR mice and its mechanism.
Shenglong ZHU ; Zhenyu ZHANG ; Guiping REN ; Xianlong YE ; Lei MA ; Dan YU ; Miaomiao HAN ; Jingzhuang ZHAO ; Tianyuan ZHANG ; Deshan LI
Acta Pharmaceutica Sinica 2013;48(12):1778-84
This study is to evaluate the therapeutic effect of fibroblast growth factor 21 (FGF21) on NAFLD in MSG-IR mice and to provide mechanism insights into its therapeutic effect. The MSG-IR mice with insulin resistance were treated with high dose (0.1 micromol.kg-1d-1) and low dose (0.025 micromol.kg-1d-1) of FGF21 once a day for 5 weeks. Body weight was measured weekly. At the end of the experiment, serum lipids, insulin and aminotransferases were measured. Hepatic steatosis was observed. The expression of key genes regulating energy metabolism were detected by real-time PCR. The results showed that after 5 weeks treatment, both doses of FGF21 reduced body weight (P<0.01), corrected dyslipidemia (P<0.01), reversed steatosis and restored the liver morphology in the MSG model mice and significantly ameliorated insulin resistance. Additionally, real-time PCR showed that FGF21 significantly reduced transcription levels of fat synthetic genes, decreased fat synthesis and promoted lipolysis and energy metabolism by up-regulating key genes of lipolysis, thereby liver fat accumulation was reduced and liver function was restored to normal levels. In conclusion, FGF21 significantly reduces body weight of the MSG-IR mice, ameliorates insulin resistance, reverses hepatic steatosis. These findings provide a theoretical support for clinical application of FGF21 as a novel therapeutics for treatment of NAFLD.
8.Therapeutic effect of fibroblast growth factor 21 on hypertension induced by insulin resistance.
Shenglong ZHU ; Guiping REN ; Zhenyu ZHANG ; Wenfei WANG ; Xianlong YE ; Miaomiao HAN ; Jingzhuang ZHAO ; Tongyu XU ; Mingyao LIU ; Deshan LI
Acta Pharmaceutica Sinica 2013;48(9):1409-14
This study is to evaluate the therapeutic effect of fibroblast growth factor 21 (FGF21) on hypertension induced by insulin resistance in rats and to provide mechanistic insights into its therapeutic effect. Male Sprague-Dawley (SD) rats were fed with high-fructose (10%) water to develop mild hypertensive models within 4 weeks, then randomized into 4 groups: model control, FGF21 0.25, 0.1 and 0.05 micromol x kg(-1) x d(-1) groups. Five age-matched normal SD rats administrated with saline were used as normal controls. The rats in each group were treated once a day for 4 weeks. Body weight was measured weekly, systolic blood pressure (SBP) was measured noninvasively using a tail-cuff method, insulin sensitivity was assessed using oral glucose tolerance test (OGTT) and HOMA-IR assay. At the end of the treatment, blood samples were collected, and blood glucose, serum cholesterol, serum triglyceride and serum insulin were measured. The results showed that blood pressure of the rats treated with different doses of FGF21 returned to normal levels [(122.2 +/- 3.5) mmHg, P < 0.01] after 4-week treatment, whereas, SBP of untreated (model control) rats maintained a high level [(142.5 +/- 4.5) mmHg] throughout the treatment. The observation of blood pressure in 24 h revealed that SBP of FGF21 treated-rats maintained at (130 +/- 4.5) mmHg vs. (143 +/- 5.5) mmHg for model control (P < 0.01). FGF21 treatment groups improved serum lipids obviously, total cholesterol (TC) and triglyceride (TG) levels decreased significantly to normal levels. The serum NO levels of three different doses FGF21 treatment group were significantly higher than that of the model control group [(7.32 +/- 0.11), (7.24 +/- 0.13), (6.94 +/- 0.08) vs. (6.56 +/- 0.19) micromol x L(-1), P < 0.01], and the degree of improvement showed obvious dose-dependent manner, indicating that FGF21 can significant increase serum NO in fructose-induced hypertension rat model and improve endothelial NO release function. The results of OGTT and HOMA-IR showed that insulin resistance state was significantly relieved in a dose-dependent manner. Thus, this study demonstrates that FGF21 significantly ameliorates blood pressure in fructose-induced hypertension model by relieving insulin resistance. This finding provides a theoretical support for clinical application of FGF21 as a novel therapeutics for treatment of essential hypertension.
9.Feasibility of endoscopic resection-closure for non-intraluminal gastric stromal tumors originating from the muscularis propria layer
Linhong NING ; Lei WANG ; Chaoqiang FAN ; Wei REN ; Xia ZHANG ; Hong GUO ; Xianlong LIN ; Yihui LI ; Xiaoyan ZHAO
Chinese Journal of Digestive Endoscopy 2010;27(10):526-528
Objective To evaluate the feasibility of endoscopic resection and closure for non-intraluminal gastric stromal tumors originating from the muscularis propria layer.Methods Included in the study were 46 patients with gastric submucosal lesions originating from the muscularis propria layer, detected by gastroscopy and endoscopic ultrasonography.The lesions were removed by endoscopic resection and closure, which were further diagnosed as stromal tumor by means of pathologic and immunohistochemical examinations.The patients were followed up with endoscopy for evaluation of therapeutic effect and complications.Results All lesions were successfully removed, with serosa layer remained in 2 cases and full layer resection in other 44, which were all closed by endoscopic clips.Combination managements of acid suppression,gastrointestinal decompression and intravenous antibiotics were applied in all patients.Pathology reports confirmed complete resection of all lesions, with 0.5 to 3.7 cm in diameter.Normal diet was restored in 44 patients 48 ~ 72 h after the procedure.Pneumoperitoneum and focal peritonitis occurred in 2 cases, one of which underwent rupture and was clamped again.The 2 patients recovered after 10-12 days of conservative treatments.Follow-up endoscopy revealed white ulcerous scar in all cases.Conclusion Endoscopic resection and closure therapy is a safe, economic and less invasive treatment for non-intraluminal gastric stromal tumors originating from the muscularis propria layer.
10.Optimization and characterization of a novel FGF21 mutant.
Xianlong YE ; Huashan GAO ; Wenfei WANG ; Guiping REN ; Mingyao LIU ; Kun HE ; Yakun ZHANG ; Jingzhuang ZHAO ; Dan YU ; Deshan LI
Acta Pharmaceutica Sinica 2012;47(7):897-903
Fibroblast growth factor 21 (FGF21) is a member of FGF family. It has been demonstrated that FGF21 is an independent, safe and effective regulator of blood glucose levels in vivo. In order to improve the activity of FGF21, we exchanged the beta10-beta12 domain of the human FGF21 with that of the mouse FGF21 to construct a novel FGF21 gene (named hmFGF21), and then subcloned hmFGF21 gene into the SUMO expression vector to create pSUMO-hmFGF21 and transformed it into E. coli Rosetta for expression of the fusion protein SUMO-hmFGF21. Both in vitro and in vivo glucose regulation activity of hmFGF21 was evaluated. The SDS-PAGE result showed that compared with wild-type hFGF21, the soluble expression of hmFGF21 increased about 2-fold. HmFGF21 was more potent in stimulation of glucose uptake in HepG2 cells in vitro. The results of anti-diabetic effect on db/db mice demonstrated that hmFGF21 had better efficacy on controlling the blood glucose of the db/db diabetic animals than wild-type hFGF21. These results suggest that the biological properties of FGF21 are significantly improved by optimization.