1.Investigation on infections of human intestinal parasites in Taixing City
Lanmei ZHAO ; Niankun ZHANG ; Xiangzhen XU ; Xiulan CHEN ; Weifeng DING
Chinese Journal of Schistosomiasis Control 2014;(4):473-474
Objective To understand the current status of infections of intestinal parasites of population in Taixing City,Ji-angsu Province. Methods The infection rates and densities of human intestinal parasites were investigated according to the methods of the National Investigation Scheme on Human Principal Parasites,and the data of society,economy and disease con-trol were collected and analyzed. Results Among 2 556 people investigated in five villages,16 persons were found with intesti-nal parasites, with an infection rate of 0.63%. The infection rate was higher in residents with a low education level than in others and it was higher in the age group over 50 years than in the group under 50 years. The infection density was mild and the most was the single parasite infection. Conclusions The current status of intestinal parasite infections of population in Taixing City has reached the county-level control standard of Jiangsu Province. Therefore,the preventive strategy and measures should be ad-justed and the monitoring work should be strengthened.
2.Effect of the hydrophobin HFBI-fusion tag on exogenous protein accumulation in tobacco plant.
Xiqian ZHANG ; Hongzhen MU ; Ting MA ; Xiangzhen DING ; Zhiying LI ; Sheng WANG
Journal of Southern Medical University 2015;35(12):1665-1671
OBJECTIVETo explore the mechanisms by which HFBI fusions increase recombinant fusion protein accumulation in plants.
METHODSThe HFBI sequence from Trichoderma reesei was synthesized and two plant expression vectors for expression of green fluorescence protein (GFP) and GFP-HFBI were constructed. The vectors were inoculated in Nicotiana benthamiana plants through agroinfiltration, and the expression levels and mRNA accumulation levels of GFP in Nicotiana leaves were examined by Western blotting, ELISA and RT-PCR.
RESULTSThe HFBI fusion tag significantly enhanced the accumulation of GFP in the leaves of N. benthamiana without causing toxic effects. Endoplasmic reticulum-targeted GFP-HFBI fusion induced the formation of spherical protein particles in the plant cells.
CONCLUSIONHFBI fusions can increase the accumulation of its fusion partner in plants by forming stable protein particles, which probably shields the target protein from endogenous protease-induced degadation. HFBI fusion technology provides an alternative to improving recombinant protein expression in plants from agroinfection-compatible expression vectors.
Endoplasmic Reticulum ; Genetic Engineering ; methods ; Genetic Vectors ; Green Fluorescent Proteins ; biosynthesis ; Imidazoles ; chemistry ; Plant Leaves ; metabolism ; Plants, Genetically Modified ; genetics ; metabolism ; Recombinant Fusion Proteins ; biosynthesis ; Tobacco ; genetics ; metabolism
3.Transient expression of bioactive recombinant human plasminogen activator in tobacco leaf.
Jiexue MA ; Lele WU ; Xiangzhen DING ; Zhiying LI ; Sheng WANG
Journal of Southern Medical University 2019;39(5):515-522
OBJECTIVE:
To assess the potential of transient expression of recombinant human plasminogen activator (rhPA) in plants as a cost-effective approach for recombinant rhPA production.
METHODS:
Tobacco mosaic virus-based expression vector pTMV rhPA-NSK and plant binary expression vector pJ Zera-rhPA were constructed by sequence synthesis and subcloning. The two vectors were inoculated on either or leaves agroinfiltration. The expression of recombinant rhPA in leaves was examined using Western blotting and ELISA, and the fibrinolysis activity of plant-produced rhPA was assessed by fibrin agarose plate assay (FAPA).
RESULTS:
Five to nine days after infiltration with an inoculum containing pTMV rhPA-NSK, necrosis appeared in the infiltrated area on the leaves of both plants, but intact recombinant rhPA was still present in the necrotic leaf tissues. The accumulation level of recombinant rhPA in infiltrated leaves was significantly higher than that in leaves ( < 0.05). The yield of recombinant rhPA was up to 0.6% of the total soluble protein (or about 60.0 μg per gram) in the fresh leaf biomass at 7 days post-inoculation. The plant-derived rhPA was bioactive to convert inactive plasminogen to active plasmin. No necrosis occurred in pJ Zera-rhPA-infiltrated leaves. The Zera-rhPA protein was partially cleaved between the site of Zera tag and rhPA sequence in both leaves. We speculated that the formation of Zera tags-induced particles in the plant cells was a dynamic process of progressive aggregation in which some of the soluble polypeptides were encapsulated in these particles.
CONCLUSIONS
Enzymatically active recombinant rhPA can be rapidly expressed in tobacco plants using the plant viral ampliconbased system, which offers a promising alternative for cost-effective production of recombinant rhPA.
Humans
;
Plant Leaves
;
Plants, Genetically Modified
;
Plasminogen
;
Plasminogen Activators
;
metabolism
;
Recombinant Proteins
;
Tobacco