1.Seroprevalence of antibody against Toxoplasma gondii among patients with hematological malignancies
Yujuan YANG ; Qian WANG ; Lili XIANG ; Yanna MENG ; Cixian ZHANG ; Jie FU
Chinese Journal of Schistosomiasis Control 2025;37(1):93-97
Objective To investigate the seroprevalence of antibody against Toxoplasma gondii among patients with hematological malignancies, and compare it with that among health individuals, so as to provide insights into unraveling the pathogenesis of hematological malignancies. Methods A total of 225 patients with hematological malignancies in Department of Hematology, Xuzhou Central Hospital and 300 healthy individuals in the same hospital were enrolled from 2017 to 2024. Blood samples were collected from all subjects, and the serum IgG and IgM antibodies against T. gondii were detected using chemiluminescent immunoassay. Demographic and clinical features were collected from patients with hematological malignancies, including gender, age, contact with cats, consumption of raw or undercooked meat, type of malignancy, clinical symptoms, blood transfusion and treatment, and the seroprevalence of anti-T. gondii antibody was compared among patients with different characteristics. Results The age (t = 0.72, P > 0.05) and gender (χ2 = 0.93, P > 0.05) were compared between patients with hematological malignancies and healthy individuals. The seroprevalence of T. gondii infection was 20.89% among patients with hematological malignancies and 4.33% among healthy individuals (χ2 = 34.81, P < 0.01), and the seroprevalence of anti-T. gondii IgG antibody was 20.89% among patients with hematological malignancies and 4.33% among healthy individuals (χ2 = 34.81, P < 0.01), while there was no significant difference in the seroprevalence of anti-T. gondii IgM antibody between patients with hematological malignancies and healthy individuals (1.33% vs. 0; corrected χ2 = 2.02, P > 0.05). The seroprevalence of T. gondii infection was 23.08% among patients with leukemia, 16.67% among patients with lymphoma, 19.23% among patients with multiple myeloma, 24.00% among patients with myeloproliferative neoplasm, and 26.09% among patients with myelodysplastic syndrome (χ2 = 1.44, P > 0.05), and was all higher than among healthy individuals (corrected χ2 = 23.92, 10.74, 13.76, 12.84 and 14.54; all P values < 0.01). In addition, there were no significant differences in the detection of anti-T. gondii antibody among patients with hematological malignancies in terms of gender, age, contact with cats, consumption of raw or undercooked meat, chemotherapy or blood transfusion (χ2 = 0.76, 1.97, 0, 2.81, 2.38 and 0.66; all P values > 0.05). Conclusions There is a high risk of T. gondii infection among patients with hematological malignancies, and intensified surveillance of T. gondii infection is recommended among patients with hematological malignancies.
2.Correlation of serum lipid soluble vitamin levels with body fat mass percentage and lifestyle among primary school students
NI Yiping, ZHU Bo, YOU Jie, ZHANG Wen, WANG Li, JI Xiang
Chinese Journal of School Health 2025;46(11):1564-1568
Objective:
To analyze the correlation between the levels of vitamin A, vitamin D, vitamin E with body fat mass percentage(FMP) as well as lifestyle factors among primary school students, so as to provide references for exploring the vitamin nutritional status of primary school students and its potential influencing factors.
Methods:
From September 1 to October 30, 2021, a cluster sampling method was used to select 750 thirdgrade students from eight primary schools in Luohu District, Shenzhen. Their body composition was measured, and blood samples were collected to detect the serum levels of vitamin A, vitamin D, and vitamin E using a mass spectrometer. Dietary and exercise habits were collected through questionnaires. Mann-Whitney U test and Kruskal-Wallis H rank sum test were used for inter group comparisons, spearman correlation was used for correlation analysis,and Logistic regression model was used to analyze the association between lifestyle and vitamin content.
Results:
The overall level of vitamin A in school aged children was 0.4 (0.4, 0.5) mg/L, with a deficiency rate of 0 and a marginal deficiency rate of 5.1%; the level of vitamin D was 26.0 (22.0, 30.0) ng/mL, with a deficiency rate of 0.4% and an insufficiency rate of 12.7%; the content of vitamin E was 11.8 (10.1, 13.5) mg/L, with an insufficiency rate of 0.8%. Spearman correlation analysis showed that vitamin A was positively correlated with FMP in the total population, boys, girls, and normal weight population ( r =0.18, 0.18, 0.20, 0.10), and vitamin D was positively correlated with FMP in the total population and obese population ( r =0.08,0.16)(all P <0.05). Logistic regression analysis showed that marginal deficiency of vitamin A was associated with consumption of animal, snack, and dairy/egg/bean foods ( OR =0.45, 0.55, 0.59); whether vitamin D was deficient was influenced by gender ( OR =2.65) and exercise ( OR = 1.96 ) (all P <0.05).
Conclusion
Vitamin A, vitamin D and vitamin E levels are associated with body fat percentage, with significant variations in vitamin status among individuals of different body types, necessitating targeted supplementation.
3.Influence of iron metabolism on osteoporosis and modulating effect of traditional Chinese medicine.
Yi-Li ZHANG ; Bao-Yu QI ; Chuan-Rui SUN ; Xiang-Yun GUO ; Shuang-Jie YANG ; Ping LIU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):575-582
Recent studies have shown that an imbalance in iron metabolism can affect the composition and microstructural changes of bone, disrupting bone homeostasis and leading to osteoporosis(OP). The imbalance in iron metabolism, along with its induced local abnormal microenvironment and cellular iron death, has become a new focal point in OP research, drawing increasing attention from the academic community regarding the regulation of iron metabolism to prevent and manage OP. From the perspective of traditional Chinese medicine(TCM), iron metabolism imbalance has potential connections to TCM theories regarding internal organs, as well as treatments aimed at tonifying the kidney, strengthening the spleen, and activating blood circulation. Evidence is continually emerging that TCMs and effective components that tonify the kidney, strengthen the spleen, and activate blood circulation can prevent and manage OP by regulating iron metabolism. This article analyzes the relationship between iron and bone, as well as the effects of TCM formulations on improving iron metabolism and influencing bone metabolism, from the perspectives of iron metabolism mechanisms and TCM interventions, aiming to broaden existing clinical strategies for prevention and treatment and inject new momentum into the field of OP as it moves into a new era.
Osteoporosis/drug therapy*
;
Humans
;
Iron/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Medicine, Chinese Traditional
;
Bone and Bones/drug effects*
4.Rubioncolin C targets cathepsin D to induce autophagosome accumulation and suppress gastric cancer.
Liang ZHANG ; Jun-Jie CHEN ; Man-Xiang GU ; Yi-Fan ZHONG ; Yuan SI ; Ying LIU
China Journal of Chinese Materia Medica 2025;50(5):1267-1275
This study aimed to explore the molecular mechanism of rubioncolin C(RuC) in inhibiting gastric cancer(GC). AGS and MGC803 cell lines were selected as cellular models. After treating the cells with RuC at different concentrations, the effects of RuC on the proliferation ability of GC cells were assessed using the CCK-8 method, real-time cellular analysis(RTCA), and colony formation assays. Transmission electron microscopy was used to observe subcellular structural changes. Immunofluorescence was applied to detect LC3 fluorescent foci. Acridine orange staining was used to evaluate the state of intracellular lysosomes. Western blot was employed to detect the expression of autophagy-related proteins LC3Ⅱ, P62, and lysosomal cathepsin D(CTSD). The SuperPred online tool was used to predict the target proteins that bound to RuC, and molecular docking analysis was conducted to identify the interaction sites between RuC and CTSD. The drug affinity responsive target stability(DARTS) assay was performed to detect the direct binding interaction between RuC and CTSD. The results showed that RuC significantly inhibited the proliferation and colony formation of GC cells at low concentrations, with 24-hour half-maximal inhibitory concentrations(IC_(50)) of 3.422 and 2.697 μmol·L~(-1) for AGS and MGC803 cells, respectively. After 24 hours of treatment with RuC at concentrations of 1, 2, and 3 μmol·L~(-1), the colony formation rates for AGS cells were 61.0%±1.5%, 28.0%±0.5%, and 18.2%±0.5%, respectively, while the rates for MGC803 cells were 56.0%±0.5%, 23.3%±1.0%, and 11.8%±1.0%, all of which were significantly reduced. Transmission electron microscopy revealed that RuC promoted an increase in autophagosome formation in GC cells. Immunofluorescence detection showed that LC3 fluorescent foci of GC cells increased with the increase in RuC dose. RuC up-regulated the expression of autophagy-related proteins LC3Ⅱ and P62 in GC cells. Acridine orange staining indicated that RuC altered the acidic environment of lysosomes. SuperPred online prediction identified CTSD as a potential target protein of RuC. Western blot analysis revealed that RuC induced the up-regulation of the inactive precursor of CTSD in GC cells. CTSD activity assays indicated that RuC reduced the activity of CTSD. Molecular docking simulations found that RuC bound to the substrate-binding region of CTSD, forming hydrogen bonds with the Tyr205 and Asp231 residues. Microscale thermophoresis and DARTS assays further confirmed that RuC directly bound to CTSD. In summary, RuC inhibits lysosomal activity by targeting and down-regulating the expression of CTSD, thereby inducing autophagosome accumulation in GC cells.
Humans
;
Stomach Neoplasms/enzymology*
;
Cathepsin D/chemistry*
;
Cell Line, Tumor
;
Molecular Docking Simulation
;
Cell Proliferation/drug effects*
;
Autophagosomes/metabolism*
;
Autophagy/drug effects*
5.Mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetic rats based on amino acid metabolism reprogramming pathways.
Xiang-Wei BU ; Xiao-Hui HAO ; Run-Yun ZHANG ; Mei-Zhen ZHANG ; Ze WANG ; Hao-Shuo WANG ; Jie WANG ; Qing NI ; Lan LIN
China Journal of Chinese Materia Medica 2025;50(12):3377-3388
This study aims to investigate the mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetes mellitus(T2DM) rats through the reprogramming of amino acid metabolism. A T2DM rat model was established by inducing insulin resistance through a high-fat diet combined with intraperitoneal injection of streptozotocin. The model rats were randomly divided into five groups: model group, high-, medium-, and low-dose Qingrun Decoction groups, and metformin group. A normal control group was also established. The rats in the normal and model groups received 10 mL·kg~(-1) distilled water daily by gavage. The metformin group received 150 mg·kg~(-1) metformin suspension by gavage, and the Qingrun Decoction groups received 11.2, 5.6, and 2.8 g·kg~(-1) Qingrun Decoction by gavage for 8 weeks. Blood lipid levels were measured in different groups of rats. Pathological damage in rat liver tissue was assessed by hematoxylin-eosin(HE) staining and oil red O staining. Transcriptome sequencing and untargeted metabolomics were performed on rat liver and serum samples, integrated with bioinformatics analyses. Key metabolites(branched-chain amino acids, BCAAs), amino acid transporters, amino acid metabolites, critical enzymes for amino acid metabolism, resistin, adiponectin(ADPN), and mammalian target of rapamycin(mTOR) pathway-related molecules were quantified using quantitative real-time polymerase chain reaction(qRT-PCR), Western blot, and enzyme-linked immunosorbent assay(ELISA). The results showed that compared with the normal group, the model group had significantly increased serum levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), and resistin and significantly decreased ADPN levels. Hepatocytes in the model group exhibited loose arrangement, significant lipid accumulation, fatty degeneration, and pronounced inflammatory cell infiltration. In liver tissue, the mRNA transcriptional levels of solute carrier family 7 member 2(Slc7a2), solute carrier family 38 member 2(Slc38a2), solute carrier family 38 member 4(Slc38a4), and arginase(ARG) were significantly downregulated, while the mRNA transcriptional levels of solute carrier family 1 member 4(Slc1a4), solute carrier family 16 member 1(Slc16a1), and methionine adenosyltransferase(MAT) were upregulated. Furthermore, the mRNA transcription and protein expression levels of branched-chain α-keto acid dehydrogenase E1α(BCKDHA) and DEP domain-containing mTOR-interacting protein(DEPTOR) were downregulated, while mRNA transcription and protein expression levels of mTOR, as well as ribosomal protein S6 kinase 1(S6K1), were upregulated. The levels of BCAAs and S-adenosyl-L-methionine(SAM) were elevated. The serum level of 6-hydroxymelatonin was significantly reduced, while imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid levels were significantly increased. Compared with the model group, Qingrun Decoction significantly reduced blood lipid and resistin levels while increasing ADPN levels. Hepatocytes had improved morphology with reduced inflammatory cells, and fatty degeneration and lipid deposition were alleviated. Differentially expressed genes and differential metabolites were mainly enriched in amino acid metabolic pathways. The expression levels of Slc7a2, Slc38a2, Slc38a4, and ARG in the liver tissue were significantly upregulated, while Slc1a4, Slc16a1, and MAT expression levels were significantly downregulated. BCKDHA and DEPTOR expression levels were upregulated, while mTOR and S6K1 expression levels were downregulated. Additionally, the levels of BCAAs and SAM were significantly decreased. The serum level of 6-hydroxymelatonin was increased, while those of imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid were decreased. In summary, Qingrun Decoction may improve amino acid metabolism reprogramming, inhibit mTOR pathway activation, alleviate insulin resistance in the liver, and mitigate pathological damage of liver tissue in T2DM rats by downregulating hepatic BCAAs and SAM and regulating key enzymes involved in amino acid metabolism, such as BCKDHA, ARG, and MAT, as well as amino acid metabolites and transporters.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Insulin Resistance
;
Diabetes Mellitus, Type 2/genetics*
;
Male
;
Liver/drug effects*
;
Amino Acids/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Metabolic Reprogramming
6.4'-O-methylbavachalcone improves vascular cognitive impairment by inhibiting neuroinflammation via EPO/Nrf2/HO-1 pathway.
Xin-Yuan ZHANG ; Chen WANG ; Hong-Qing CHEN ; Xiang-Bing ZENG ; Jun-Jie WANG ; Qing-Guang ZHANG ; Jin-Wen XU ; Shuang LING
China Journal of Chinese Materia Medica 2025;50(14):3990-4002
This study aims to explore the effects and mechanisms of 4'-O-methylbavachalcone(MeBavaC), an active compound from Psoraleae Fructus, in regulating white matter neuroinflammation to improve vascular cognitive impairment. Male Sprague-Dawley(SD) rats were randomly divided into four groups: sham group, model group, high-dose MeBavaC group(14 mg·kg~(-1)), and low-dose MeBavaC group(7 mg·kg~(-1)). The rat model of chronic cerebral hypoperfusion(CCH) was established using bilateral common carotid artery occlusion. The Morris water maze test was performed to evaluate the learning and memory abilities of the rats. Luxol fast blue staining, Nissl staining, immunofluorescence, immunohistochemistry, and transmission electron microscopy were utilized to observe the morphology and ultrastructure of the white matter myelin sheaths, axon integrity, the morphology and number of hippocampal neurons, and the loss and activation of glial cells in the white matter. Transcriptome analysis was performed to explore the potential mechanisms of white matter injury induced by CCH. Western blot and quantitative real-time polymerase chain reaction(qRT-PCR) assays were conducted to measure the expression levels of NOD-like receptor protein 3(NLRP3), absent in melanoma 2(AIM2), gasdermin D(GSDMD), cysteinyl aspartate-specific proteinase-1(caspase-1), interleukin-18(IL-18), interleukin-1β(IL-1β), erythropoietin(EPO), nuclear factor erythroid 2-related factor 2(Nrf2), and heme oxygenase-1(HO-1) in the white matter of rats. The results showed that compared with the model group, MeBavaC significantly improved the learning and memory abilities of rats with CCH, improved the damage of white matter myelin sheath, maintained axonal integrity, reduced the loss of hippocampal neurons and oligodendrocytes in the white matter, inhibited the activation of microglia and the proliferation of astrocytes in the white matter, and suppressed the NLRP3/AIM2/caspase-1/GSDMD pathway. The expression levels of inflammatory cytokines IL-1β and IL-18 were significantly reduced, while EPO expression and the expression of Nrf2/HO-1 antioxidant pathway were notably elevated. In conclusion, MeBavaC can alleviate cognitive impairment in rats with CCH and suppress neuroinflammation in cerebral white matter. The mechanism of action may involve activation of EPO activity, promotion of endogenous antioxidant pathways, and inhibition of neuroinflammation in the white matter. This study suggests that MeBavaC exhibits antioxidant and anti-neuroinflammatory effects, showing potential application in improving cognitive dysfunction.
Animals
;
Male
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/immunology*
;
Rats
;
Chalcones/administration & dosage*
;
Cognitive Dysfunction/metabolism*
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/drug therapy*
;
Heme Oxygenase-1/metabolism*
;
Humans
;
Heme Oxygenase (Decyclizing)/genetics*
7.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
8.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
9.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy
10.Detection and Transfusion Strategy of Mimicking Antibodies.
Hui ZHANG ; Jie-Wei ZHENG ; Sha JIN ; Wei SHEN ; Shan-Shan LI ; Xiao-Wen CHENG ; Dong XIANG
Journal of Experimental Hematology 2025;33(4):1168-1172
OBJECTIVE:
To explore serological detection and blood transfusion strategies of mimicking antibodies, so as to provide appropriate transfusion strategies.
METHODS:
Detailed serological tests, including ABO blood group, Rh typing, antibody specificity, etc,were performed on two patients with autoimmune hemolytic anemia(AIHA). Meanwhile, the references about blood transfusion from mimicking antibody patients published from 1977 to 2024 in China and abroad were retrospectively summarized and analyzed.
RESULTS:
The patient 1 blood type was AB,CCDee and the antibody is mimicking anti-e, transfusion the e-negative red blood cells (RBCs) was effective. After two transfusions of e-RBCs, hemoglobin levels significantly increased from 48 g/L to 91 g/L, with complete resolution of hemolytic symptoms. The patient 2 blood type was O,CcDee, and the antibody was mimicking anti-c, the patient was diagnosed with AIHA and treated with hormone. No blood products were transfused during hospitalization, and his hemolysis was relieved.
CONCLUSION
Strictly grasping the indication of blood transfusion, blood transfusion should not be performed in the unnecessary conditions, and the corresponding antigen-negative RBC should be screened for transfusion in the necessay conditions.
Humans
;
Blood Transfusion
;
Anemia, Hemolytic, Autoimmune/therapy*
;
ABO Blood-Group System
;
Retrospective Studies
;
Antibodies
;
Male
;
Blood Grouping and Crossmatching


Result Analysis
Print
Save
E-mail