1.Exploration on Mechanism of Topical Treatment of Allergic Contact Dermatitis in Mice with Portulacae Herba Based on Nrf2/HO-1/NF-κB Signaling Pathway
Xiaoxue WANG ; Guanwei FAN ; Xiang PU ; Zhongzhao ZHANG ; Xia CHEN ; Ying TANG ; Nana WU ; Jiangli LUO ; Xiangyan KONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):115-123
ObjectiveTo investigate the mechanism of topical treatment of allergic contact dermatitis (ACD) mice with Portulacae Herba based on the nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/nuclear factor-κB (NF-κB) signaling pathway. MethodsA total of 70 6-week-old specific pathogen free (SPF) female Kunming mice were adaptively fed for 1 week and randomly divided into blank group, model group, compound dexamethasone acetate cream group (2.075×10-2 g·g-1), blank matrix cream group, low-dose Portulacae Herba cream group (0.1 g·g-1), high-dose Portulacae Herba cream group (0.2 g·g-1), and Portulacae Herba + inhibitor group (0.2 g·g-1 + 30 mg·kg-1 ML385), with 10 mice in each group. One day before the experiment, the mice were shaved on the neck and back. Except for the blank group, the mice in the other groups were treated with 2,4-dinitrochlorobenzene (DNCB) to establish an ACD model. After respective administration, the skin lesion of the mice was scored, and the histopathological changes of the skin were stained with hematoxylin-eosin (HE). Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), reactive oxygen species (ROS), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) in serum of mice. The expression of Nrf2/HO-1/NF-κB signaling pathway-related proteins in mouse skin tissue was detected by immunohistochemistry (IHC), Western blot, and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the blank group, the mice in the model group had an increased skin lesion score (P<0.01), severe pathological damage to skin tissue, increased content of IL-1β, IL-6, ROS, and MDA in their serum (P<0.01), and decreased content of SOD (P<0.01). In addition, the mRNA and protein expression levels of Nrf2, HO-1, and nuclear factor-κB inhibitor α (IκBα) in skin tissue were up-regulated (P<0.01), while the protein expression levels of phosphorylated (p)-IκBα and p-NF-κB p65 and the mRNA expression of NF-κB p65 were down-regulated (P<0.01). Compared with the model group and the blank matrix cream group, the mice treated with Portulacae Herba had a decreased skin lesion score (P<0.01), reduced pathological damage to skin tissue, decreased content of IL-1β, IL-6, ROS, and MDA in their serum (P<0.01), and increased content of SOD (P<0.01). Additionally, the mRNA and protein expression levels of Nrf2, HO-1, and IκBα in skin tissue were down-regulated (P<0.05,P<0.01), and the protein expression levels of p-IκBα and p-NF-κB p65 and the mRNA expression of NF-κB p65 were up-regulated (P<0.05,P<0.01). Compared with the Portulacae Herba + inhibitor group, the high-dose Portulacae Herba cream group had a decreased skin lesion score (P<0.01), alleviated pathological damage to skin tissue, decreased content of IL-1β, IL-6, ROS, and MDA in the serum of mice (P<0.05,P<0.01), and increased content of SOD (P<0.01). The protein expression levels of Nrf2, HO-1, and IκBα and the mRNA expression of Nrf2 and HO-1 in skin tissue were up-regulated (P<0.05,P<0.01), and the protein expression levels of p-IκBα and p-NF-κB p65 and the mRNA expression of NF-κB p65 were down-regulated (P<0.05). ConclusionPortulacae Herba can improve DNCB-induced ACD skin damage in mice by regulating the Nrf2/HO-1/NF-κB signaling pathway.
2.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
3.Effects of Portulaca oleracea cream on skin pruritus and barrier function in allergic contact dermatitis mice
Xiaoxue WANG ; Xia CHEN ; Xiang PU ; Guanwei FAN ; Xiangyan KONG ; Ying TANG ; Nana WU ; Jiangli LUO
China Pharmacy 2025;36(11):1352-1357
OBJECTIVE To study the effects and mechanism of Portulaca oleracea cream on skin pruritus and barrier function in allergic contact dermatitis (ACD) mice. METHODS Low-concentration and high-concentration P. oleracea creams were prepared, with the P. oleracea extract solution (1 g/mL, calculated by crude drug) concentrations of 10% and 20%. Sixty BALB/c mice were randomly allocated into blank group, model group, Mometasone furoate cream group (positive control), blank matrix cream group, P. oleracea low-concentration and high-concentration cream groups. Except for blank group, ACD model was induced in each group using 2,4-dinitrochlorobenzene solution. The blank group and model groups received normal saline, while the remaining groups were treated with their respective creams, once a day, at a dose of approximately 0.5 g per application, continuously for 14 days. At 24 h post-final administration, skin lesions of mice were observed and scored; pathological changes of skin tissue were observed; serum levels of immunoglobulin E(IgE) and tumor necrosis factor-α (TNF-α) were quantified. mRNA expression of MAS-related G protein-coupled receptors (including MrgprA3, MrgprC11, and MrgprD) in dorsal root ganglion (DRG) was assessed; while protein expressions of skin barrier function-related proteins Claudin-1 and Occludin in skin tissues were determined. RESULTS Compared with blank group, mice in the model group exhibited severe skin damage, characterized by loss of epidermal architecture, hyperkeratosis of the skin tissue, and the infiltration of a large number of inflammatory cells. The skin injury scores, as well as the serum levels of IgE and TNF-α, and the mRNA expression levels of MrgprA3, MrgprC11, and MrgprD in DRG, were all significantly elevated compared to the blank group (P<0.05 or P<0.01); in contrast, the protein expression levels of Claudin-1 and Occludin in the skin tissue were markedly reduced (P<0.05). Compared with model group, mice in P. oleracea low-concentration and high- concentration cream groups demonstrated significant alleviation of skin damage, as evidenced by reduced epidermal hyperplasia, mitigated spongiosis in the dermis, and decreased infiltration of inflammatory cells; these quantitative indicators were almost significantly reversed (P<0.05 or P<0.01). No significant differences were observed in the aforementioned skin injuries, pathological alterations, or quantitative indicators between the blank matrix cream group and the model group. CONCLUSIONS P. oleracea may ameliorate skin lesions and restore skin barrier function of ACD mice, the mechanism of which may be associated with downregulating mRNA expressions of MrgprA3, MrgprC11 and MrgprD in DRG, and up-regulating the protein expressions of Claudin-1 and Occludin in skin tissue.
4.Rubioncolin C targets cathepsin D to induce autophagosome accumulation and suppress gastric cancer.
Liang ZHANG ; Jun-Jie CHEN ; Man-Xiang GU ; Yi-Fan ZHONG ; Yuan SI ; Ying LIU
China Journal of Chinese Materia Medica 2025;50(5):1267-1275
This study aimed to explore the molecular mechanism of rubioncolin C(RuC) in inhibiting gastric cancer(GC). AGS and MGC803 cell lines were selected as cellular models. After treating the cells with RuC at different concentrations, the effects of RuC on the proliferation ability of GC cells were assessed using the CCK-8 method, real-time cellular analysis(RTCA), and colony formation assays. Transmission electron microscopy was used to observe subcellular structural changes. Immunofluorescence was applied to detect LC3 fluorescent foci. Acridine orange staining was used to evaluate the state of intracellular lysosomes. Western blot was employed to detect the expression of autophagy-related proteins LC3Ⅱ, P62, and lysosomal cathepsin D(CTSD). The SuperPred online tool was used to predict the target proteins that bound to RuC, and molecular docking analysis was conducted to identify the interaction sites between RuC and CTSD. The drug affinity responsive target stability(DARTS) assay was performed to detect the direct binding interaction between RuC and CTSD. The results showed that RuC significantly inhibited the proliferation and colony formation of GC cells at low concentrations, with 24-hour half-maximal inhibitory concentrations(IC_(50)) of 3.422 and 2.697 μmol·L~(-1) for AGS and MGC803 cells, respectively. After 24 hours of treatment with RuC at concentrations of 1, 2, and 3 μmol·L~(-1), the colony formation rates for AGS cells were 61.0%±1.5%, 28.0%±0.5%, and 18.2%±0.5%, respectively, while the rates for MGC803 cells were 56.0%±0.5%, 23.3%±1.0%, and 11.8%±1.0%, all of which were significantly reduced. Transmission electron microscopy revealed that RuC promoted an increase in autophagosome formation in GC cells. Immunofluorescence detection showed that LC3 fluorescent foci of GC cells increased with the increase in RuC dose. RuC up-regulated the expression of autophagy-related proteins LC3Ⅱ and P62 in GC cells. Acridine orange staining indicated that RuC altered the acidic environment of lysosomes. SuperPred online prediction identified CTSD as a potential target protein of RuC. Western blot analysis revealed that RuC induced the up-regulation of the inactive precursor of CTSD in GC cells. CTSD activity assays indicated that RuC reduced the activity of CTSD. Molecular docking simulations found that RuC bound to the substrate-binding region of CTSD, forming hydrogen bonds with the Tyr205 and Asp231 residues. Microscale thermophoresis and DARTS assays further confirmed that RuC directly bound to CTSD. In summary, RuC inhibits lysosomal activity by targeting and down-regulating the expression of CTSD, thereby inducing autophagosome accumulation in GC cells.
Humans
;
Stomach Neoplasms/enzymology*
;
Cathepsin D/chemistry*
;
Cell Line, Tumor
;
Molecular Docking Simulation
;
Cell Proliferation/drug effects*
;
Autophagosomes/metabolism*
;
Autophagy/drug effects*
5.Effect and mechanism of Bufei Decoction on improving Klebsiella pneumoniae pneumonia in rats by regulating IL-17 signaling pathway.
Li-Na HUANG ; Zheng-Ying QIU ; Xiang-Yi PAN ; Chen LIU ; Si-Fan LI ; Shao-Guang GE ; Xiong-Wei SHI ; Hao CAO ; Rui-Hua XIN ; Fang-di HU
China Journal of Chinese Materia Medica 2025;50(11):3097-3107
Based on the interleukin-17(IL-17) signaling pathway, this study explores the effect and mechanism of Bufei Decoction on Klebsiella pneumoniae pneumonia in rats. SD rats were randomly divided into the control group, model group, Bufei Decoction low-dose group(6.68 g·kg~(-1)·d~(-1)), Bufei Decoction high-dose group(13.36 g·kg~(-1)·d~(-1)), and dexamethasone group(1.04 mg·kg~(-1)·d~(-1)), with 10 rats in each group. A pneumonia model was established by tracheal drip injection of K. pneumoniae. After successful model establishment, the improvement in lung tissue damage was observed following drug administration. Core targets and signaling pathways were screened using transcriptomics techniques. Real-time fluorescence quantitative polymerase chain reaction was used to detect the mRNA expression of core targets interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and chemokine CXC ligand 6(CXCL6). Western blot was used to assess key proteins in the IL-17 signaling pathway, including interleukin-17A(IL-17A), nuclear transcription factor-κB activator 1(Act1), tumor necrosis factor receptor-associated factor 6(TRAF6), and downstream phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK), and phosphorylated nuclear factor-κB p65(p-NF-κB p65). Apoptosis of lung tissue cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL). The results showed that, compared with the control group, the model group exhibited significant pathological damage in lung tissue. The mRNA expression of IL-6, IL-1β, TNF-α, and CXCL6, as well as the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly increased, and the number of apoptotic cells was notably higher, indicating successful model establishment. Compared with the model group, both low-and high-dose groups of Bufei Decoction showed reduced pathological damage in lung tissue. The mRNA expression levels of IL-6, IL-1β, TNF-α, and CXCL6, and the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly decreased, with a significant reduction in apoptotic cells in the high-dose group. In conclusion, Bufei Decoction can effectively improve lung tissue damage and reduce inflammation in rats with K. pneumoniae. The mechanism may involve the regulation of the IL-17 signaling pathway and the reduction of apoptosis.
Animals
;
Interleukin-17/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Klebsiella pneumoniae/physiology*
;
Klebsiella Infections/immunology*
;
Humans
;
Lung/drug effects*
6.CDK5-Induced HCN2 Channel Dysfunction in the Prelimbic Cortex Drives Allodynia and Anxiety-Like Behaviors in Neuropathic Pain.
Lu CHEN ; Shuai CAO ; Yun-Ze LIU ; Qi-Fan YANG ; Jin-Yu YANG ; Dan-Yang ZHANG ; Guo-Guang XIE ; Xiang-Sha YIN ; Ying ZHANG ; Yun WANG
Neuroscience Bulletin 2025;41(12):2254-2271
The prelimbic cortex (PL) plays a critical role in processing both the sensory and affective components of pain. However, the underlying molecular mechanisms remain poorly understood. In this study, we observed a reduction in hyperpolarization-activated cation current (Ih) in layer V pyramidal neurons of the contralateral PL in a mouse model of spared nerve injury (SNI). The expression of hyperpolarization-activated cyclic nucleotide-gated 2 (HCN2) channels was also decreased in the contralateral PL. Conversely, microinjection of fisetin, a partial agonist of HCN2, produced both analgesic and anxiolytic effects. Additionally, we found that cyclin-dependent kinase 5 (CDK5) was activated in the contralateral PL, where it formed a complex with HCN2 and phosphorylated its C-terminus. Knockdown of CDK5 restored HCN2 expression and alleviated both pain hypersensitivity and anxiety-like behaviors. Collectively, these results indicate that CDK5-mediated dysfunction of HCN2 in the PL underlies nerve injury-induced mechanical hypersensitivity and anxiety.
Animals
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism*
;
Hyperalgesia/metabolism*
;
Cyclin-Dependent Kinase 5/metabolism*
;
Neuralgia/metabolism*
;
Male
;
Anxiety/metabolism*
;
Mice
;
Potassium Channels/metabolism*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Pyramidal Cells/metabolism*
7.Advances in Quantification and Site Stoichiometry Analysis Methods for Phosphorylated Proteins
Yuan LIU ; Rui ZHAI ; Fan WU ; Zhan-Ying CHU ; Yang ZHAO ; Xin-Hua DAI ; Xiang FANG ; Xiao-Ping YU
Chinese Journal of Analytical Chemistry 2024;52(5):609-623
The post-translational modification of proteins is a key mechanism that imparts physiological functions to proteins,among which reversible phosphorylation modifications play a pivotal role in many biological processes.Aberrant changes in phosphorylation are often closely associated with various major disease processes.In recent years,with the aid of proteomic technologies and methods,high-throughput,high-precision qualitative and quantitative approaches for phosphorylated proteins have rapidly advanced.This article reviews the research progress of phosphorylated protein quantification and chemical proteomics analysis methods based on the"bottom-up"strategy,including phosphopeptide enrichment methods,mass spectrometry fragmentation methods,quantification analysis methods and phosphorylation site stoichiometry,and discusses the development trend of quantification and stoichiometric analysis methods for phosphorylated proteins.
8.Research on the impact of supply side policy coordination of medical insurance on cost control under DIP payment method
Kun-He LIN ; Ye-Sheng SHANGGUAN ; Ya-Qi RAO ; Jing PENG ; Yi CHEN ; Yi-Fan YAO ; Ying-Bei XIONG ; Li XIANG
Chinese Journal of Health Policy 2024;17(5):17-24
Objective:This study aims to explore the synergistic effects of DIP and other medical insurance supply-side policies.Method:City A that has piloted DIP reform was set as the treatment group,and City B without reform was set as the control group.A total of 1 120 public medical institution samples from 2019 to 2022 were collected.The total medical expenses during hospitalization and some structural expenses were analyzed using DID method.Result:DIP had a significant inhibitory effect on the medical expenses,and the expenses of checkups and examinations during hospitalization in city A,but had no impact on the drug and the material expenses during hospitalization.Conclusion:DIP played a significant cost control role and effectively controlled the total medical expenses during hospitalization.The synergistic effects of price adjustment of medical services policy and national centralized drug/material procurement policy on cost control were insufficient.DIP synergized with other supply-side policies to promote rational medical cost structure.It is suggested that medical insurance departments should focus on the synergistic effects of medical insurance supply-side policies to jointly improve the efficiency of medical insurance fund utilization.
9.Analysis of medical reimbursement rate and influencing factors under the DIP payment method
Meng-Yuan ZHAO ; Kun-He LIN ; Ying-Bei XIONG ; Yi-Fan YAO ; Zhi-He CHEN ; Yu-Meng ZHANG ; Li XIANG
Chinese Journal of Health Policy 2024;17(6):40-46
Objective:Analyze the medical reimbursement rate and influencing factors under the DIP payment method to refine the DIP payment policy,promote the optimization of internal operations in medical institutions,and ensure reasonable compensation.Methods:Based on the 2022 DIP fund settlement data from 196 medical institutions in City A,the study used multiple linear regression to analyze the factors affecting medical reimbursement rate and conducted a heterogeneity analysis for medical institutions of different levels.Results:The medical reimbursement rate for medical institutions in City A in 2022 was 103.32%.Medical institutions with lower CMI standardized inpatient costs,lower rates of deviation cases,tertiary care institutions,lower proportion of level-four surgeries,and lower ratios of resident to employee medical insurance cases have higher medical reimbursement rate(P<0.05).Heterogeneity analysis reveals that therates of deviation cases,the proportion of primary care diseases,the ratio of resident to employee medical insurance cases,and the low-standard admission rate have different impacts on medical institutions of different levels.Conclusion:Medical insurance departments should improve policies for primary care diseases,dynamically adjust disease catalogs and payment standards,optimize funding levels and institutional coefficients,and increase penalties for violations to ensure effective use of funds.Medical institutions need to strengthen their understanding of policies,focus on refined internal management,promote standardized and rational diagnosis and treatment through performance assessment transformation,and leverage their own advantages in medical services to reasonably increase the medical reimbursement rate.
10.Molecular characteristics of diffuse large B-cell lymphoma with high expression of MYC:analysis of 45 cases
Nian LIU ; Dongshen MA ; Ying GU ; Dan LUO ; Meiting FAN ; Yubo WANG ; Chenxi XIANG ; Hui LIU
Chinese Journal of Clinical and Experimental Pathology 2024;40(1):60-65
Purpose To explore the molecular features of diffuse large B-cell lymphoma(DLBCL)with high expression of MYC.Methods The clinical data of 45 cases of DLBCL were collected.Immunohistochemical EnVision method was used to classify the patients into the group with high expression of MYC and the group with low expression of MYC.All samples were subjected to DNA targeted sequencing and molecular typing was performed using the LymphGen online tool.Cellular origin was determined by using the Lymph2Cx method.The correlation be-tween MYC overexpression and clinicopathological parameters was analyzed by the x2 test and Fisher precise test.Survival curves were drawn and survival-related factors were analyzed u-sing Cox univariate and multivariate regression.ResultsCases were classified into DLBCL with high expression of MYC(n=17)and DLBCL with low expression of MYC(n=28).Com-pared to the group with low expression of MYC,the group with high expression of MYC had more PIM1,MYD88,CD79B,CD58 and PRDM1 mutations(76.5%vs 28.6%,70.6%vs 32.1%,58.8%vs28.6%,29.4%vs3.6%,29.4%vs 3.6%,P<0.05),MCD were more frequently found(58.8%vs 10.7%,P=0.001),GCB were rarely found(17.6%vs 50.0%,P=0.030).Overall survival was significantly shorter in DLBCL with high expression of MYC(P<0.05).Cox multi-factorial analysis showed that age was an independent prognostic factor for DLBCL(P<0.05).Conclusion Patients with high expression of MYC were frequently characterized as MCD and ABC,and PIM1,MYD88,CD79B,CD58 and PRDM1 muta-tions were common.Patients with high expression of MYC had a poorer prognosis.

Result Analysis
Print
Save
E-mail