1.The Role and Possible Mechanism of T Cell Costimulatory Molecule CD28 Activation in Pathogenesis of Multiple Myeloma.
Yang-Min ZHANG ; Li-Ying ZHANG ; Hua-Yu LING ; Jin-Xiang FU
Journal of Experimental Hematology 2025;33(4):1079-1085
OBJECTIVE:
To investigate the effect of signals mediated by activated CD28 in promoting survival of multiple myeloma (MM) cells and metabolic fitness and its possible mechanism.
METHODS:
The expression of CD28 on 4 MM cell lines (XG2, XG1, RPMI 8226 and U266) was determined by flow cytometry. Two cell lines with the highest or lowest CD28 expression were selected. The proliferation, cell cycle, migration and apoptosis of MM cells in vitro were determined in medium containing high glucose concentration or CD28 agonist monoclonal antibody with different bioassays. shRNA interference assay was used to knock down the expression of CD28 on U266 cells. Then, the effect of activated CD28 on glucose uptake rate and drug resistance in MM cells were analyzed using fluorescent glucose analogues (2-NBDG). The expression of Glut1/4, HkII and Fasn was determined with real time quantitative PCR.
RESULTS:
Flow cytometry analysis showed that all the four tested MM cell lines expressed CD28 and U266 cells had the highest positive rate. The results of in vitro experiment showed that CD28 activation could significantly up-regulate the expression of Glut4 and HkII, promote MM cell metabolic remodeling, enhance 2-NBDG/glucose uptake, increase energy metabolism, thereby elevating cell proliferation and migration abilities, leading to an increase in the number of cells in S- and G2-phases. Meanwhile, activated CD28 subsequently up-regulated resistance of MM cells to bortezomib or dexamethasone.
CONCLUSION
MM cells express high levels of CD28 abnormally, and activation of CD28 can promote up-regulation of glucose uptake in MM cells, thereby promoting cell proliferation and enhancing drug resistance.
Humans
;
Multiple Myeloma/pathology*
;
CD28 Antigens/metabolism*
;
Cell Proliferation
;
Cell Line, Tumor
;
Apoptosis
;
Glucose/metabolism*
;
Glucose Transporter Type 4/metabolism*
;
Glucose Transporter Type 1
2.Study on the anti-inflammatory mechanism of active ingredients of Gubi Formula in the treatment of osteoarthritis
Peng DING ; Feng-Xiang TIAN ; Li XU ; Yu GE ; Fu-Rong WANG ; Yu-Jie BAO ; Ling-Ling ZHOU
The Chinese Journal of Clinical Pharmacology 2024;40(14):2053-2057
Objective To explore the anti-inflammatory mechanism of the active ingredients of Gubi Formula in treating osteoarthritis.Methods Normal human chondrocytes were cultured in vitro,and lipopolysaccharide(LPS)stimulated inflammation.The cells were divided into control group(normal culture),model group(10 μg·mL-1 LPS),quercetin group(10 μg·mL-1 LPS+8 μmol·L-1 quercetin),formononetin group(10 μg·mL-1 LPS+50 μmol·L-1 formononetin),naringin group(10 μg·mL-1 LPS+10 μmol·L-1 naringin),asperosaponin Ⅵ group(10 μg·mL-1 LPS+50 pmol·L-1 asperosaponin Ⅵ),β-ecdysterone group(10 μg·mL-1 LPS+50 μmol·L-1β-ecdysterone).Cell counting kit-8(CCK8)was used to detect the viability of chondrocytes.Western blot was used to detect the expression of nuclear factor NF-kappa-B p65 subunit(p65),nuclear factor erythroid 2-related factor 2(Nrf2)nuclear protein.Results The cell viability of control group,model group,quercetin group,formononetin group,naringin group,Dipsacoside Ⅵ group,β-ecdysterone group were(103.10±8.55)%,(62.41±2.35)%,(76.92±1.74)%,(77.01±0.60)%,(80.39±3.06)%,(79.43±0.94)%,(55.20±0.99)%;the relative expression of Nrf2 protein were 1.00±0.00,1.01±0.09,1.30±0.15,0.91±0.15,1.23±0.25,0.71±0.19,1.51±0.13,1.26±0.15;the relative expression of P65 protein were 1.00±0.00,2.24±0.85,0.74±0.33,1.49±0.29,0.97±0.06,1.33±0.07,1.67±0.22,1.52±0.17;the relative expression of inflammatory mediators iNOS were 1.00±0.00,1.52±0.27,1.07±0.24,1.25±0.12,1.01±0.30,1.44±0.12,1.07±0.18,1.11±0.16.The above indexes in quercetin group,formononetin group and naringin group were significantly different from those in model group(P<0.05,P<0.01 and P<0.001).Compared with the model group,there was no significant difference in the above indexes between the Asperosaponin Ⅵ group and theβ-ecdysterone group(all P>0.05).Conclusion The active components of Gubi Formula,including quercetin,mangiferin,and naringin,can activate Nrf2-HO-1 signaling and inhibit the activation of the Nuclear factor-κB(NF-κB)pathway plays an anti-inflammatory role in alleviating osteoarthritis.
3.Effects of Down-Regulation of PAK1 on Differentiation and Apop-tosis of MPN Cells with MPLW515L Gene Mutation and Survival of 6133/MPL Mice
Qi-Gang ZHANG ; Shu-Jin WANG ; Xiang-Ru YU ; Li-Wei ZHANG ; Kai-Lin XU ; Chun-Ling FU
Journal of Experimental Hematology 2024;32(5):1472-1478
Objective:To investigate the effects of down-regulation of p21 activated kinase 1(PAK1)on the proliferation,differentiation,and apoptosis of myeloproliferative neoplasm(MPN)cells(6133/MPL)with thrombopoietin receptor MPL mutation at codon 515(MPLW515L)and survival of 6133/MPL mice.Methods:Interference with the protein level of PAK1 in 6133/MPL cells was assessed using lentivirus-mediated shRNA transfection technology.CCK-8 assay was used to detect the effect of down-regulation of PAK1 on the proliferation viability of 6133/MPL cells,and colony-forming ability was measured by cell counting.Flow cytometry was used to detect the PAK1 kinase activity on the ability of polyploid DNA formation and cell apoptosis in 6133/MPL cells.The expression of cyclin D1,cyclin D3 and apoptosis-related protein Bax was detected by Western blot.The infiltration of tumor cells in spleen and bone marrow of 6133/MPL mice were detected by HE staining.Results:Down-regulation of PAK1 inhibited the proliferation and reduced the ability of cell colony formation of 6133/MPL cells.After knocking down PAK1,the content of polyploid DNA in 6133/MPL cells increased from 31.8 to 57.5%and 48.0%,and the proportion of apoptosis increased approximately to 10.8%.Down-regulation of PAK1 led to a reduction of infiltration of tumor cells in liver and bone marrow of 6133/MPL mice,thereby prolonging survival time.Conclusion:Down-regulation of PAK1 can significantly inhibit the growth of 6133/MPL cells,promote the formation of polyploid DNA,induce 6133/MPL cell apoptosis,and prolong the survival time of 6133/MPL mice.
4.Protective effects of Tangtongyin on podocyte injury in rats with diabetic nephropathy via PTEN/PI3K/Akt signaling pathway
Hong YANG ; Yan-Ling PAN ; Hong-Min CHEN ; Hong-Ying FU ; Lu TANG ; Xiang-Li LING
Chinese Traditional Patent Medicine 2024;46(7):2182-2188
AIM To investigate the protective effects of Tangtongyin on podocyte injury in rats with diabetic nephropathy(DN).METHODS The DN rat models established by feeding of high-fat and high-sugar diet combined with multiple injections of streptozotocin(STZ)were randomly divided into the model group,the irbesartan group(13.5 mg/kg)and the low-dose,medium-dose and high-dose Tangtongyin groups(930,1 860,3 720 mg/kg),in contrast to those normal rats of the blank group.In the 8 weeks consecutive administration,each group was intragastrically dosed with the corresponding drug once daily.The rats had their fasting blood glucose(FBG),24-hour urine protein(24-h UP),serum creatinine(Scr)and blood urea nitrogen(BUN)levels detected;their renal pathological changes observed by HE staining;their ultrastructural changes of renal podocytes observed by transmission electron microscopy;their mRNA expressions of renal PTEN,PI3K,Akt,nephrin,podocin and CD2AP detected by RT-qPCR;and their protein expressions of renal PTEN,PI3K,Akt,p-Akt,nephrin,podocin and CD2AP detected by Western blot.RESULTS Compared with the model group,the Tangtongyin groups displayed decreased levels of FBG,24-h UP,Scr and BUN(P<0.05,P<0.01);improved renal pathological morphology and podocyte ultrastructure;increased mRNA and protein expressions of PTEN,nephrin,podocin and CD2AP(P<0.05,P<0.01);and decreased expression of p-Akt protein(P<0.05,P<0.01).Additionally,the medium-dose and high-dose Tangtongyin groups shared indecreased mRNA and protein expressions of PI3K and Akt(P<0.05,P<0.01).CONCLUSION Tangtongyin can protect the renal podocytes in DN rats,and its mechanism may associate with its efficacy via PTEN/PI3K/Akt signaling pathway.
5.Link Brain-Wide Projectome to Neuronal Dynamics in the Mouse Brain.
Xiang LI ; Yun DU ; Jiang-Feng HUANG ; Wen-Wei LI ; Wei SONG ; Ruo-Nan FAN ; Hua ZHOU ; Tao JIANG ; Chang-Geng LU ; Zhuang GUAN ; Xiao-Fei WANG ; Hui GONG ; Xiang-Ning LI ; Anan LI ; Ling FU ; Yan-Gang SUN
Neuroscience Bulletin 2024;40(11):1621-1634
Knowledge about the neuronal dynamics and the projectome are both essential for understanding how the neuronal network functions in concert. However, it remains challenging to obtain the neural activity and the brain-wide projectome for the same neurons, especially for neurons in subcortical brain regions. Here, by combining in vivo microscopy and high-definition fluorescence micro-optical sectioning tomography, we have developed strategies for mapping the brain-wide projectome of functionally relevant neurons in the somatosensory cortex, the dorsal hippocampus, and the substantia nigra pars compacta. More importantly, we also developed a strategy to achieve acquiring the neural dynamic and brain-wide projectome of the molecularly defined neuronal subtype. The strategies developed in this study solved the essential problem of linking brain-wide projectome to neuronal dynamics for neurons in subcortical structures and provided valuable approaches for understanding how the brain is functionally organized via intricate connectivity patterns.
Animals
;
Neurons/physiology*
;
Mice
;
Brain/physiology*
;
Mice, Inbred C57BL
;
Somatosensory Cortex/physiology*
;
Neural Pathways/physiology*
;
Hippocampus/physiology*
;
Mice, Transgenic
;
Male
;
Brain Mapping
;
Nerve Net/physiology*
;
Substantia Nigra/physiology*
;
Tomography, Optical/methods*
6.Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment.
Wen-Tao JIA ; Shuang XIANG ; Jin-Bo ZHANG ; Jia-Ying YUAN ; Yu-Qian WANG ; Shu-Fang LIANG ; Wan-Fu LIN ; Xiao-Feng ZHAI ; Yan SHANG ; Chang-Quan LING ; Bin-Bin CHENG
Journal of Integrative Medicine 2024;22(6):696-708
OBJECTIVE:
Tumor-derived exosomes (TDEs) play crucial roles in intercellular communication. Hypoxia in the tumor microenvironment enhances secretion of TDEs and accelerates tumor metastasis. Jiedu recipe (JR), a traditional Chinese medicinal formula, has demonstrated efficacy in preventing the metastasis of hepatocellular carcinoma (HCC). However, the underlying mechanism remains largely unknown.
METHODS:
Animal experiments were performed to investigate the metastasis-preventing effects of JR. Bioinformatics analysis and in vitro assays were conducted to explore the potential targets and active components of JR. TDEs were assessed using nanoparticle tracking analysis (NTA) and Western blotting (WB). Exosomes derived from normoxic or hypoxic HCC cells (H-TDEs) were collected to establish premetastatic mouse models. JR was intragastrically administered to evaluate its metastasis-preventive effects. WB and lysosomal staining were performed to investigate the effects of JR on lysosomal function and autophagy. Bioinformatics analysis, WB, NTA, and immunofluorescence staining were used to identify the active components and potential targets of JR.
RESULTS:
JR effectively inhibited subcutaneous-tumor-promoted lung premetastatic niche development and tumor metastasis. It inhibited the release of exosomes from tumor cells under hypoxic condition. JR treatment promoted both lysosomal acidification and suppressed secretory autophagy, which were dysregulated in hypoxic tumor cells. Quercetin was identified as the active component in JR, and the epidermal growth factor receptor (EGFR) was identified as a potential target. Quercetin inhibited EGFR phosphorylation and promoted the nuclear translocation of transcription factor EB (TFEB). Hypoxia-impaired lysosomal function was restored, and secretory autophagy was alleviated by quercetin treatment.
CONCLUSION
JR suppressed HCC metastasis by inhibiting hypoxia-stimulated exosome release, restoring lysosomal function, and suppressing secretory autophagy. Quercetin acted as a key component of JR and regulated TDE release through EGFR-TFEB signaling. Our study provides a potential strategy for retarding tumor metastasis by targeting H-TDE secretion. Please cite this article as: Jia WT, Xiang S, Zhang JB, Yuan JY, Wang YQ, Liang SF, Lin WF, Zhai XF, Shang Y, Ling CQ, Cheng BB. Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment through the EGFR-TFEB signaling pathway. J Integr Med. 2024; 22(6): 697-709.
Exosomes/drug effects*
;
Animals
;
Carcinoma, Hepatocellular/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Liver Neoplasms/pathology*
;
Tumor Microenvironment/drug effects*
;
Mice
;
Humans
;
Cell Line, Tumor
;
Mice, Inbred BALB C
;
Neoplasm Metastasis
;
Male
;
Mice, Nude
7.The Pathogenic Characteristics of the Initial Three Mpox Cases in Hunan Province, China.
Rong Jiao LIU ; Xing Yu XIANG ; Zi Xiang HE ; Qian Lai SUN ; Fu Qiang LIU ; Shuai Feng ZHOU ; Yi Wei HUANG ; Fang Cai LI ; Chao Yang HUANG ; Juan WANG ; Fang Ling HE ; Xin Hua OU ; Shi Kang LI ; Yu Ying LU ; Fan ZHANG ; Liang CAI ; Hai Ling MA ; Zhi Fei ZHAN
Biomedical and Environmental Sciences 2023;36(12):1167-1170
8.Three-dimensional multi-component analysis of Aurantii Fructus quality and research on influencing factors.
Zi-Xuan LIU ; Xue-Sen FU ; Ling WANG ; Xiang-Dan LIU ; Ri-Bao ZHOU
China Journal of Chinese Materia Medica 2023;48(1):265-272
The present study explored the consistency of the content proportions of active components of Aurantii Fructus and analyzed the influencing factors based on three-dimensional multi-component analysis. A total of 839 Aurantii Fructus samples in 65 research articles were analyzed using the three-dimensional multi-component analysis mode. The content data of flavonoid components(naringin, hesperidin, neohesperidin, narirutin, and nobiletin), coumarin components(meranzin and gluconolactone), and alkaloid(synephrine) in 386 samples which met the criteria of 2020 edition of the Chinese Pharmacopoeia were extracted and adjusted to percentages, and the content ratios between components were calculated. The influencing factors of Aurantii Fructus quality were analyzed. The results showed content ratios of components as follows: neohesperidin∶naringin in the range of 0.4-1.2; narirutin∶naringin in the range of 0.02-0.16; hesperidin∶naringin in the range of 0.01-0.3; nobiletin∶naringin in the range of 0.000 588 3-0.069 68; synephrine∶naringin in the range of 0.02-0.042; gluconolactone∶naringin in the range of 0.001-0.01; meranzin∶naringin in the range of 0.000 4-0.035. The quality of Aurantii Fructus was closely related to the origin, variety, harvesting time, and processing method of medicinal materials. Harvesting time had a greater impact on the quality of Aurantii Fructus, and the origin and variety had a certain impact on the quality of Aurantii Fructus. The findings of this study indicated that the ratios between flavonoid components, flavonoids and coumarin components, and flavonoids and alkaloids fluctuated. The production base should optimize the varieties, harvesting period, and processing methods of Aurantii Fructus to provide a scientific basis for the production of high-quality Aurantii Fructus.
Citrus
;
Flavonoids/analysis*
;
Drugs, Chinese Herbal
;
Fruit/chemistry*
;
Coumarins/analysis*
;
Chromatography, High Pressure Liquid/methods*
9.Bone Marrow Adipocytes Promote the Survival of Multiple Myeloma Cells and Up-Regulate Their Chemoresistance.
Xiao-Qian WEI ; Yang-Min ZHANG ; Yu SUN ; Hua-Yu LING ; Yuan-Ning HE ; Jin-Xiang FU
Journal of Experimental Hematology 2023;31(1):154-161
OBJECTIVE:
To investigate the effect of adipocytes in the bone marrow microenvironment of patients with multiple myeloma (MM) on the pathogenesis of MM.
METHODS:
Bone marrow adipocytes (BMA) in bone marrow smears of health donors (HD) and newly diagnosed MM (ND-MM) patients were evaluated with oil red O staining. The mesenchymal stem cells (MSC) from HD and ND-MM patients were isolated, and in vitro co-culture assay was used to explore the effects of MM cells on the adipogenic differentiation of MSC and the role of BMA in the survival and drug resistance of MM cells. The expression of adipogenic/osteogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4, FASN and ALP both in MSC and MSC-derived adipocytes was determined with real-time quantitative PCR. The Western blot was employed to detect the expression levels of IL-6, IL-10, SDF-1α, TNF-α and IGF-1 in the supernatant with or without PPAR-γ inhibitor.
RESULTS:
The results of oil red O staining of bone marrow smears showed that BMA increased significantly in patients of ND-MM compared with the normal control group, and the BMA content was related to the disease status. The content of BMA decreased in the patients with effective chemotherapy. MM cells up-regulated the expression of MSC adipogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4 and FASN, but the expression of osteogenic differentiation-related gene ALP was significantly down-regulated. This means that the direct consequence of the interaction between MM cells and MSC in the bone marrow microenvironment is to promote the differentiation of MSC into adipocytes at the expense of osteoblasts, and the cytokines detected in supernatant changed. PPAR-γ inhibitor G3335 could partially reverse the release of cytokines by BMA. Those results confirmed that BMA regulated the release of cytokines via PPAR-γ signal, and PPAR-γ inhibitor G3335 could distort PPAR-γ mediated BMA maturation and cytokines release. The increased BMA and related cytokines effectively promoted the proliferation, migration and drug resistance of MM cells.
CONCLUSION
The BMA and its associated cytokines are the promoting factors in the survival, proliferation and migration of MM cells. BMA can protect MM cells from drug-induced apoptosis and plays an important role in MM treatment failure and disease progression.
Humans
;
Osteogenesis/genetics*
;
Bone Marrow/metabolism*
;
Multiple Myeloma/metabolism*
;
Drug Resistance, Neoplasm
;
Peroxisome Proliferator-Activated Receptors/pharmacology*
;
Cell Differentiation
;
Adipogenesis
;
Cytokines/metabolism*
;
Adipocytes/metabolism*
;
Bone Marrow Cells/metabolism*
;
Cells, Cultured
;
PPAR gamma/pharmacology*
;
Tumor Microenvironment
10.Mining and identification of members of MYB transcription factor family in Lonicera macranthoides.
Juan ZENG ; Yu-Qing LONG ; Xue-Sen FU ; Ling WANG ; Zi-Xuan LIU ; Ri-Bao ZHOU ; Xiang-Dan LIU
China Journal of Chinese Materia Medica 2023;48(8):2103-2115
As a large family of transcription factors, the MYB family plays a vital role in regulating flower development. We studied the MYB family members in Lonicera macranthoides for the first time and identified three sequences of 1R-MYB, 47 sequences of R2R3-MYB, two sequences of 3R-MYB, and one sequence of 4R-MYB from the transcriptome data. Further, their physicochemical properties, conserved domains, phylogenetic relationship, protein structure, functional information, and expression were analyzed. The results show that the 53 MYB transcription factors had different conserved motifs, physicochemical properties, structures, and functions in wild type and 'Xianglei' cultivar of L. macranthoides, indicating their conservation and diversity in evolution. The transcript level of LmMYB was significantly different between the wild type and 'Xianglei' cultivar as well as between flowers and leaves, and some genes were specifically expressed. Forty-three out of 53 LmMYB sequences were expressed in both flowers and leaves, and 9 of the LmMYB members showed significantly different transcript levels between the wild type and 'Xianglei' cultivar, which were up-regulated in the wild type. The results provide a theoretical basis for further studying the specific functional mechanism of the MYB family.
Transcription Factors/metabolism*
;
Lonicera/metabolism*
;
Phylogeny
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant

Result Analysis
Print
Save
E-mail