1.Effect of Zuogui Wan and Yougui Wan on Mitochondrial Biogenesis in BMSCs Through PGC-1α/PPARγ
Ying YANG ; Xiuzhi FENG ; Yiran CHEN ; Zhimin WANG ; Xian GUO ; Yanling REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):28-36
ObjectiveBased on the TCM theory of "Yang transforms materials to Qi while Yin constitutes material form", this paper explored the effects of Zuogui Wan and Yougui Wan on the molecular mechanism of mitochondrial biogenesis during the adipogenic differentiation process of rat bone marrow mesenchymal stem cells (BMSCs) by mediating peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and peroxisome proliferators-activated receptor γ (PPARγ), providing theoretical support for the prevention and treatment of postmenopausal osteoporosis (PMOP) using Zuogui Wan and Yougui Wan. MethodsBMSCs were divided into a blank group, Zuogui Wan (ZGW) group, Yougui Wan (YGW) group, and Progynova group. Cell identification was performed using flow cytometry. The growth curves of BMSCs were plotted using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) method, and the effects of Zuogui Wan and Yougui Wan on the proliferation of BMSCs were detected. The Oil red O staining method was used to detect lipid droplet formation. The Western blot method was used to detect the expression of adipogenesis-related factors PPARγ, CCAAT/enharcer-binding protein (C/EBP)α, C/EBPβ, lipoprotein lipase (LPL) protein, brown adipose tissue-related (BAT) proteins PGC-1α, uncoupcing protein 1 (UCP1), PR domdin-containing protein 16 (PRDM16), mitochondrial biogenesis-related PGC-1α, nuclear respiratory factor 1 (Nrf1), nuclear factor E2-related factor 2 (Nrf2), and mitochondrial transcription factor A (TFAM). The expression of adipogenesis-related factors PPARγ, C/EBPα, C/EBPβ, LPL genes, and the copy number of cytochrome B (CytoB mtDNA) gene was detected using real-time polymerase chain reaction (Real-time PCR). Mitochondrial ultrastructure was detected using transmission electron microscopy. ResultsCompared with that in the blank group, the proliferation ability of BMSCs in each treatment group increased continuously as the intervention progressed, and lipid droplets significantly decreased after the drug intervention. The mRNA and protein expression levels of adipogenesis-related factors PPARγ, C/EBPα, C/EBPβ, and LPL were significantly downregulated (P<0.01), while those of the BAT-related factors PGC-1α, UCP1, PRDM16 were significantly upregulated (P<0.01). The number of mitochondria increased, accompanied by reduced swelling. The double membrane and cristae structure were clear, and the internal cristae rupture was reduced. The copy number of CytoB mtDNA in each treatment group was significantly increased (P<0.01). The protein expression levels of mitochondrial biogenesis-related PGC-1α, Nrf1, Nrf2, and TFAM in each treatment group were significantly increased (P<0.01). ConclusionBoth Zuogui Wan and Yougui Wan can prevent and treat PMOP by intervening in mitochondrial biogenesis in BMSCs through PGC-1α/PPARγ.
2.Clinical Effects of Pomalidomide-Based Regimen in the Treatment of Relapsed and Refractory Multiple Myeloma.
Man YANG ; Yan HUANG ; Ling-Xiu ZHANG ; Guo-Qing LYU ; Lu-Yao ZHU ; Xian-Kai LIU ; Yan GUO
Journal of Experimental Hematology 2025;33(2):431-436
OBJECTIVE:
To study the clinical effects of pomalidomide-based regimen in the treatment of relapsed and refractory multiple myeloma (RRMM).
METHODS:
60 patients with RRMM in hematology department of the First Affiliated Hospital of Xinxiang Medical University from November 2020 to January 2023 were selected. Among them, 15 cases were treated with PDD regimen (pomalidomide + daratumumab + dexamethasone), and 45 cases were treated with PCD regimen (pomalidomide + cyclophosphamide + dexamethasone). The clinical effects were evaluated.
RESULTS:
The median number of treatment cycles for the entire cohort was 5 (2-11), with an overall response rate (ORR) of 75.0%. The ORR of patients treated with PDD regimen was 73.3%, while the ORR of patients treated with PCD regimen was 75.6%. The ORR of 46 patients with non high-risk cytogenetic abnormalities (non-HRCA) was 86.9%, significantly higher than the 35.7% of 14 patients with HRCA (χ2 =15.031, P < 0.05). The median PFS for all patients was 8.0(95%CI : 6.8-9.1) months and the median OS was 14.0 (95%CI : 11.3-16.7) months. Among patients treated with PDD regimen, the PFS and OS of patients with non-HRCA were significantly higher than those of patients with HRCA [PFS: 7.0(95%CI : 4.6-9.3) months vs 4.0(95%CI : 3.1-4.8) months, χ2 =5.120, P < 0.05; OS: not reached vs 6.0(95%CI : 1.1-10.9) months, χ2 =9.870, P < 0.05]. Among patients treated with PCD regimen, the PFS and OS of patients with non-HRCA were significantly higher than those of patients with HRCA [PFS: 9.0(95%CI : 6.2-11.8) months vs 6.0(95%CI : 5.4-6.6) months, χ2=14.396, P < 0.05; OS: not reached vs 11.0(95%CI : 6.4-15.6) months, χ2 =7.471, P < 0.05].
CONCLUSION
The pomalidomide-based regimen has a good clinical effect and safety in the treatment of RRMM.
Humans
;
Multiple Myeloma/drug therapy*
;
Thalidomide/administration & dosage*
;
Dexamethasone/therapeutic use*
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Female
;
Male
;
Middle Aged
;
Recurrence
;
Aged
;
Cyclophosphamide/therapeutic use*
;
Treatment Outcome
;
Antibodies, Monoclonal
3.Effectiveness of Lianhua Qingwen Granule and Jingyin Gubiao Prescription in Omicron BA.2 Infection and Hospitalization: A Real-World Study of 56,244 Cases in Shanghai, China.
Yu-Jie ZHANG ; Guo-Jian LIU ; Han ZHANG ; Chen LIU ; Zhi-Qiang CHEN ; Ji-Shu XIAN ; Da-Li SONG ; Zhi LIU ; Xue YANG ; Ju WANG ; Zhe ZHANG ; Lu-Ying ZHANG ; Hua FENG ; Yan-Qi ZHANG ; Liang TAN
Chinese journal of integrative medicine 2025;31(1):11-18
OBJECTIVE:
To examine the effectiveness of Chinese medicine (CM) Lianhua Qingwen Granule (LHQW) and Jingyin Gubiao Prescription (JYGB) in asymptomatic or mild patients with Omicron infection in the shelter hospital.
METHODS:
This single-center retrospective cohort study was conducted in the largest shelter hospital in Shanghai, China, from April 10, 2022 to May 30, 2022. A total of 56,244 asymptomatic and mild Omicron cases were included and divided into 4 groups, i.e., non-administration group (23,702 cases), LHQW group (11,576 cases), JYGB group (12,112 cases), and dual combination of LHQW and JYGB group (8,854 cases). The length of stay (LOS) in the hospital was used to assess the effectiveness of LHQW and JYGB treatment on Omicron infection.
RESULTS:
Patients aged 41-60 years, with nadir threshold cycle (CT) value of N gene <25, or those fully vaccinated preferred to receive CM therapy. Before or after propensity score matching (PSM), the multiple linear regression showed that LHQW and JYGB treatment were independent influence factors of LOS (both P<0.001). After PSM, there were significant differences in LOS between the LHQW/JYGB combination and the other groups (P<0.01). The results of factorial design ANOVA proved that the LHQW/JYGB combination therapy synergistically shortened LOS (P=0.032).
CONCLUSIONS
Patients with a nadir CT value <25 were more likely to accept CM. The LHQW/JYGB combination therapy could shorten the LOS of Omicron-infected individuals in an isolated environment.
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Male
;
Female
;
Middle Aged
;
Adult
;
China/epidemiology*
;
Hospitalization
;
COVID-19 Drug Treatment
;
COVID-19/epidemiology*
;
SARS-CoV-2
;
Retrospective Studies
;
Treatment Outcome
;
Length of Stay
;
Young Adult
;
Aged
4.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
5.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
6.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
7.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
8.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
9.Current status of generalized pustular psoriasis: Findings from a multicenter hospital-based survey of 127 Chinese patients.
Haimeng WANG ; Jiaming XU ; Xiaoling YU ; Siyu HAO ; Xueqin CHEN ; Bin PENG ; Xiaona LI ; Ping WANG ; Chaoyang MIAO ; Jinzhu GUO ; Qingjie HU ; Zhonglan SU ; Sheng WANG ; Chen YU ; Qingmiao SUN ; Minkuo ZHANG ; Bin YANG ; Yuzhen LI ; Zhiqiang SONG ; Songmei GENG ; Aijun CHEN ; Zigang XU ; Chunlei ZHANG ; Qianjin LU ; Yan LU ; Xian JIANG ; Gang WANG ; Hong FANG ; Qing SUN ; Jie LIU ; Hongzhong JIN
Chinese Medical Journal 2025;138(8):953-961
BACKGROUND:
Generalized pustular psoriasis (GPP), a rare and recurrent autoinflammatory disease, imposes a substantial burden on patients and society. Awareness of GPP in China remains limited.
METHODS:
This cross-sectional survey, conducted between September 2021 and May 2023 across 14 hospitals in China, included GPP patients of all ages and disease phases. Data collected encompassed demographics, clinical characteristics, economic impact, disease severity, quality of life, and treatment-related complications. Risk factors for GPP recurrence were analyzed.
RESULTS:
Among 127 patients (female/male ratio = 1.35:1), the mean age of disease onset was 25 years (1st quartile [Q1]-3rd quartile [Q3]: 11-44 years); 29.2% had experienced GPP for more than 10 years. Recurrence occurred in 75.6% of patients, and nearly half reported no identifiable triggers. Younger age at disease onset ( P = 0.021) and transitioning to plaque psoriasis ( P = 0.022) were associated with higher recurrence rates. The median diagnostic delay was 8 months (Q1-Q3: 2-41 months), and 32.3% of patients reported misdiagnoses. Comorbidities were present in 53.5% of patients, whereas 51.1% experienced systemic complications during treatment. Depression and anxiety affected 84.5% and 95.6% of patients, respectively. During GPP flares, the median Dermatology Life Quality Index score was 19.0 (Q1-Q3: 13.0-23.5). This score showed significant differences between patients with and without systemic symptoms; it demonstrated correlations with both depression and anxiety scores. Treatment costs caused financial hardship in 55.9% of patients, underscoring the burden associated with GPP.
CONCLUSIONS
The substantial disease and economic burdens among Chinese GPP patients warrant increased attention. Patients with early onset disease and those transitioning to plaque psoriasis require targeted interventions to mitigate the high recurrence risk.
Humans
;
Male
;
Female
;
Psoriasis/pathology*
;
Adult
;
Cross-Sectional Studies
;
Adolescent
;
Child
;
Young Adult
;
Quality of Life
;
Middle Aged
;
China/epidemiology*
;
Recurrence
;
Risk Factors
;
Surveys and Questionnaires
;
East Asian People
10.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured

Result Analysis
Print
Save
E-mail