1.Sequence structure and phylogenetic analysis of the chloroplast genomes of Alangium chinense (Lour.) Harms and its different subspecies
Xiao-ying YANG ; Chang LIU ; Xian-fa ZENG ; Xiong-wei LIU ; Jie-hong ZHAO ; Ting-ting FENG ; Ying ZHOU
Acta Pharmaceutica Sinica 2022;57(10):3229-3239
italic>Alangium chinense is a commonly used medicinal plant of Alangiaceae
2.The alterations of nitric oxide synthase activity of ventricular cardiac muscle of rats in two septic shock models.
Ting-mei YE ; Ce XU ; Qin GAO ; Xin-mei ZHOU ; Qi-xian SHAN ; Qiang XIA
Chinese Journal of Applied Physiology 2007;23(2):194-198
AIMTo observe the differences of hemodynamics and nitric oxide synthase(NOS) activity of ventricular cardiac muscle in two septic shock models and explore the possible mechanism.
METHODSTwo rat models of septic shock[lipopolysaccharide(LPS)-induced and cecal ligation and puncture (CLP)-induced septic shock] were used. The hemodynamic parameters and nitric oxide synthase activity of ventricular cardiac muscle were measured.
RESULTSThe hemodynamic parameters in CLP-induced model were increased in the early stage and decreased in the late stage while in LPS-induced model the parameters showed the same change of the CLP late stage. Both LPS model and CLP model (late stage) showed significant increase in NOS activity, but there was no difference between the two models. After treatment of the NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME), the parameters of CLP-late stage and LPS model increased significantly. The NOS activity reached the highest level in the CLP-middle stage. The production of nitrite/nitrate decreased significantly in LPS model and CLP model(late stage) after treatment of L-NAME, but the nitrite/nitrate produced by constitutive NOS in LPS model was higher than CLP model(late stage).
CONCLUSIONThe increase of the NOS activity may be the main reason to lead to the depression of the hemodynamic parameters. Inducible NOS may play the leading role in the LPS model while cNOS and iNOS have the same effect in the CLP model.
Animals ; Hemodynamics ; Lipopolysaccharides ; Male ; Myocytes, Cardiac ; metabolism ; Nitric Oxide Synthase ; metabolism ; Rats ; Rats, Sprague-Dawley ; Shock, Septic ; classification ; metabolism
3.Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-ββ1/MAPK and AMPK/SIRT1/PGC-1αα/HO-1/ NF-κκB pathways
Wei HAO ; Ting-ting YU ; Wei LI ; Guo-guang WANG ; Hui-xian HU ; Ping-ping ZHOU
The Korean Journal of Physiology and Pharmacology 2024;28(6):559-568
The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model.The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA.Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/ NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.
4.Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-ββ1/MAPK and AMPK/SIRT1/PGC-1αα/HO-1/ NF-κκB pathways
Wei HAO ; Ting-ting YU ; Wei LI ; Guo-guang WANG ; Hui-xian HU ; Ping-ping ZHOU
The Korean Journal of Physiology and Pharmacology 2024;28(6):559-568
The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model.The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA.Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/ NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.
5.Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-ββ1/MAPK and AMPK/SIRT1/PGC-1αα/HO-1/ NF-κκB pathways
Wei HAO ; Ting-ting YU ; Wei LI ; Guo-guang WANG ; Hui-xian HU ; Ping-ping ZHOU
The Korean Journal of Physiology and Pharmacology 2024;28(6):559-568
The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model.The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA.Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/ NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.
6.Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-ββ1/MAPK and AMPK/SIRT1/PGC-1αα/HO-1/ NF-κκB pathways
Wei HAO ; Ting-ting YU ; Wei LI ; Guo-guang WANG ; Hui-xian HU ; Ping-ping ZHOU
The Korean Journal of Physiology and Pharmacology 2024;28(6):559-568
The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model.The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA.Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/ NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.
7.Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-ββ1/MAPK and AMPK/SIRT1/PGC-1αα/HO-1/ NF-κκB pathways
Wei HAO ; Ting-ting YU ; Wei LI ; Guo-guang WANG ; Hui-xian HU ; Ping-ping ZHOU
The Korean Journal of Physiology and Pharmacology 2024;28(6):559-568
The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model.The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA.Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/ NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.
8.Inhibitory effect of dutasteride on the expressions of epididymal Claudin1 and β-catenin in male rats.
Shu-wu XIE ; Li-juan QU ; Xian-ying ZHOU ; Jie-yun ZHOU ; Guo-ting LI ; Ji-hong BI ; Xiang-jie GUO ; Zhao LI ; Lin CAO ; Yan ZHU
National Journal of Andrology 2015;21(1):17-22
OBJECTIVETo explore the molecular mechanism of dutasteride inhibiting fertility by studying its effects on the expressions of the epididymal epithelial junction proteins Claudin1 and β-catenin in rats.
METHODSSixteen 3-month-old SD male rats were equally divided into an experimental and a negative control group to be treated intragastrically with dutasteride at 40 mg/kg per day and the same dose of solvent, respectively, for 14 consecutive days. Then, the sperm motility and morphology of the rats were detected by computer-assisted sperm analysis, the serum levels of testosterone (T) and dihydrotestosterone (DHT) measured by ELISA, changes in the tight junction of epididymal cells observed under the transmission electron microscope, the protein and gene expressions of Claudin1 and β-catenin determined by RT-PCR and immunohistochemistry, and the conception rate of the mated female rats calculated.
RESULTSDutasteride significantly suppressed the serum DHT level, sperm motility, and fertility of the rats (P <0.05). Interspaces between epididymal epithelial cell tight junctions were observed, the volume of epididymal fluid obviously increased, and the expressions of Claudin1 and β-catenin gene and protein remarkably downregulated in the experimental rats (P <0.05).
CONCLUSIONDutasteride can significantly inhibit the fertility of male rats by reducing the serum DHT level, suppressing Claudin1 and β-catenin expressions, and damaging epididymal epithelial cell junctions.
Animals ; Azasteroids ; pharmacology ; Claudin-1 ; metabolism ; Dihydrotestosterone ; blood ; Dutasteride ; Epididymis ; drug effects ; metabolism ; Female ; Fertility ; drug effects ; Humans ; Intercellular Junctions ; drug effects ; Male ; Rats ; Rats, Sprague-Dawley ; Sperm Motility ; drug effects ; Testosterone ; blood ; Urological Agents ; pharmacology ; beta Catenin ; metabolism
9.Studies on paclitaxel-loaded nanoparticles of amphiphilic block copolymer.
An-jie DONG ; Lian-dong DENG ; Duo-xian SUN ; Yue-ting ZHANG ; Jian-zhou JIN ; Ying-jin YUAN
Acta Pharmaceutica Sinica 2004;39(2):149-152
AIMTo investigate the paclitaxel-loaded nanoparticles of poly(ethylene glycol)-b-poly(D,L-lactic acid) amphiphilic diblock copolymer (PMT).
METHODSPMT was prepared by solid dispersion technique. The average size and size distribution were determined by dynamic light scattering (DLS). The morphology was characterized by transmission electron microscopy (TEM) and 1HNMR. The influences of the copolymer molecular weight and the paclitaxel-fed amount on PMT were studied. Therapeutic effect of PMT was studied on Kunming mice liver cancer H22.
RESULTSPMT showed nanometer size and spherical morphology with core and shell. The sizes of PMT increased with increasing the molecular weight of the hydrophobic segment in PEDLLA or increasing the drug-loaded amount. The tumour inhibiting effect of PMT was similar with that of Taxol.
CONCLUSIONIt will provide an experiment basis for the development of new kind of intravenous administration of paclitaxel.
Animals ; Antineoplastic Agents, Phytogenic ; administration & dosage ; pharmacology ; Delayed-Action Preparations ; Drug Carriers ; Drug Delivery Systems ; Lactic Acid ; Liver Neoplasms, Experimental ; pathology ; Mice ; Microspheres ; Nanotechnology ; Paclitaxel ; administration & dosage ; pharmacology ; Particle Size ; Polyethylene Glycols
10.Association of TIAM1 gene polymorphisms with Kawasaki disease and its clinical characteristics.
Xian WANG ; Tian-Jiao ZHU ; Xiong-Fei ZHOU ; Zhi-Ting WAN
Chinese Journal of Contemporary Pediatrics 2015;17(11):1217-1220
OBJECTIVETo investigate the association of single nucleotide polymorphisms (SNP) rs22833188 and rs2833195 in TIAM1 gene with the susceptibility to Kawasaki disease (KD) and its clinical characteristic in children.
METHODSA case-control study was performed in this study. One hundred and eighty-eight children with KD and 197 normal children served as controls were enrolled. The genotypes of two SNPs rs22833188 and rs2833195 in TIAM1 gene were detected using PCR-RFLP.
RESULTSThere were no significant differences in the genotype (AA, AG and GG) and allele frequencies of SNP rs2833188 between the KD and control groups. Significant differences in the genotype (CC, GC and GG) frequency of SNP rs2833195 were noted between the KD and control groups (P=0.017). The frequency of C allele in the KD group was higher than in the control group (P=0.015). The polymorphism of SNP rs2833188 was associated with the occurrence of rash (P=0.011), and the polymorphism of SNP rs2833195 was associated with the occurrence of conjunctival hyperemia (P=0.021).
CONCLUSIONSThe polymorphism of rs2833195 in TIAM1 gene is associated with the susceptibility to KD. The polymorphisms rs2833188 and rs2833195 in TIAM1 gene may be associated with some clinical characteristics in children with KD.
Child ; Child, Preschool ; Female ; Genetic Predisposition to Disease ; Genotype ; Guanine Nucleotide Exchange Factors ; genetics ; Humans ; Infant ; Male ; Mucocutaneous Lymph Node Syndrome ; genetics ; Polymorphism, Single Nucleotide ; T-Lymphoma Invasion and Metastasis-inducing Protein 1