1.Research on Regulatory Mechanism of Verbenalin on HCoV-229E-infected Macrophage Injury Based on Mitophagy
Qiyue SUN ; Lei BAO ; Zihan GENG ; Ronghua ZHAO ; Shuran LI ; Xihe CUI ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Shanshan GUO ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):29-37
ObjectiveTo investigate the protective effect and mechanism of verbenalin on mouse mononuclear macrophage leukemia cells (RAW264.7) damaged by human coronavirus (HCoV)-229E infection, thereby providing experimental evidence for its development and application. MethodsRAW264.7 macrophages were infected with different concentrations of HCoV-229E to establish a coronavirus-induced macrophage injury model using the cell counting kit-8 (CCK-8) assay for assessing cell proliferation and viability. Cells were randomly divided into four groups: normal control, verbenalin group (125 μmol·L-1), model group (HCoV-229E), and HCoV-229E + verbenalin group (HCoV-229E + 125 μmol·L-1 verbenalin). Cell viability was measured using the CCK-8 assay, and the maximum non-toxic concentration (CC0), half-maximal cytotoxic concentration (CC50), half-maximal effective concentration (EC50), and selectivity index (SI) of verbenalin were calculated. Calcein/PI double staining was used to assess cell viability and cytotoxicity, and JC-1 staining was applied to evaluate changes in mitochondrial membrane potential (MMP). mito-Keima adenovirus labeling was used to assess mitophagy levels in each group. ResultsA macrophage infection model was successfully established by infecting RAW264.7 cells with the original concentration of HCoV-229E for 36 h. The CC0 of verbenalin was 125 μmol·L-1. The CC50 was 448.25 μmol·L-1. The EC50 against HCoV-229E-infected cells was 46.28 μmol·L-1, and the SI was 9.68. Compared with the normal group, the model group showed significantly reduced cell survival rate (P<0.01), increased cell death rate (P<0.01), decreased MMP (P<0.01), and suppressed mitophagy (P<0.01). In contrast, verbenalin treatment significantly improved cell survival rate (P<0.01), reduced cell death rate (P<0.01), alleviated MMP loss (P<0.01), and enhanced mitophagy levels (P<0.01) compared with the model group. ConclusionVerbenalin can enhance the survival rate of macrophages following HCoV-229E infection. The underlying mechanism may be associated with the activation of mitophagy, maintenance of MMP stability, and alleviation of mitochondrial damage.
2.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
3.Research on Regulatory Mechanism of Verbenalin on HCoV-229E-infected Macrophage Injury Based on Mitophagy
Qiyue SUN ; Lei BAO ; Zihan GENG ; Ronghua ZHAO ; Shuran LI ; Xihe CUI ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Shanshan GUO ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):29-37
ObjectiveTo investigate the protective effect and mechanism of verbenalin on mouse mononuclear macrophage leukemia cells (RAW264.7) damaged by human coronavirus (HCoV)-229E infection, thereby providing experimental evidence for its development and application. MethodsRAW264.7 macrophages were infected with different concentrations of HCoV-229E to establish a coronavirus-induced macrophage injury model using the cell counting kit-8 (CCK-8) assay for assessing cell proliferation and viability. Cells were randomly divided into four groups: normal control, verbenalin group (125 μmol·L-1), model group (HCoV-229E), and HCoV-229E + verbenalin group (HCoV-229E + 125 μmol·L-1 verbenalin). Cell viability was measured using the CCK-8 assay, and the maximum non-toxic concentration (CC0), half-maximal cytotoxic concentration (CC50), half-maximal effective concentration (EC50), and selectivity index (SI) of verbenalin were calculated. Calcein/PI double staining was used to assess cell viability and cytotoxicity, and JC-1 staining was applied to evaluate changes in mitochondrial membrane potential (MMP). mito-Keima adenovirus labeling was used to assess mitophagy levels in each group. ResultsA macrophage infection model was successfully established by infecting RAW264.7 cells with the original concentration of HCoV-229E for 36 h. The CC0 of verbenalin was 125 μmol·L-1. The CC50 was 448.25 μmol·L-1. The EC50 against HCoV-229E-infected cells was 46.28 μmol·L-1, and the SI was 9.68. Compared with the normal group, the model group showed significantly reduced cell survival rate (P<0.01), increased cell death rate (P<0.01), decreased MMP (P<0.01), and suppressed mitophagy (P<0.01). In contrast, verbenalin treatment significantly improved cell survival rate (P<0.01), reduced cell death rate (P<0.01), alleviated MMP loss (P<0.01), and enhanced mitophagy levels (P<0.01) compared with the model group. ConclusionVerbenalin can enhance the survival rate of macrophages following HCoV-229E infection. The underlying mechanism may be associated with the activation of mitophagy, maintenance of MMP stability, and alleviation of mitochondrial damage.
4.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
5.Proteomics-based Investigation of Therapeutic Effect and Mechanism of Verbenalin on Lung Injury in Mice Infected with Human Coronavirus-229E
Qiyue SUN ; Shanshan GUO ; Shuangrong GAO ; Lei BAO ; Zihan GENG ; Shuran LI ; Ronghua ZHAO ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):69-78
ObjectiveTo evaluate the pharmacological effects of verbenalin on both in vitro and in vivo infection models of human coronavirus 229E (HCoV-229E) and to preliminarily explore the antiviral mechanism of verbenalin through proteomic analysis. MethodsIn vitro, the cell counting kit-8 (CCK-8) for cell proliferation and viability assessment was used to establish a model of HCoV-229E-induced injury in human lung adenocarcinoma cells(A549). A549 cells were divided into five groups: normal group, model group, and three verbenalin treatment groups (125, 62.5, and 31.25 μmol·L-1). The cell protective activity of verbenalin was evaluated through cell viability assay and immunofluorescence staining. In vivo, 30 BALB/c mice were randomly divided into normal group, model group, chloroquine group, and high-dose, low-dose verbenalin groups (40 and 20 mg·kg-1), with six mice per group. An HCoV-229E-induced mouse lung injury model was established to evaluate the therapeutic effects of verbenalin. Lung injury was assessed by detecting the lung index and lung inhibition rate. The severity of pulmonary inflammation cytokines was measured by enzyme-linked immunosorbent assay (ELISA), while the lung morphology and structure were analyzed by micro-computed tomography (Micro-CT). Hematoxylin and eosin (HE) staining was used to assess histopathological changes in lung tissue. Additionally, four-dimensional data-independent acquisition (4D-DIA) proteomics was employed to preliminarily explore the potential mechanisms of verbenalin in treating HCoV-229E-induced lung injury in mice, through differential protein expression screening, functional annotation, enrichment analysis, and protein-protein interaction network analysis. ResultsThe A549 cells were infected with HCoV-229E at the original viral titer for 36 hours to establish an in vitro infection model. The maximum non-toxic concentration of verbenalin was 125 μmol·L-1, and the half-maximal cytotoxic concentration (CC50) was 288.8 μmol·L-1. Compared with the normal group, the model group showed a significant decrease in cell viability (P<0.01), a significant increase in the proportion of dead cells (P<0.01), mitochondrial damage, and a significant reduction in mitochondrial membrane potential (P<0.01). After treatment with different concentrations of verbenalin (125, 62.5, and 31.25 μmol·L-1), cell viability was significantly increased (P<0.01), and the proportion of dead cells was reduced (P<0.01), with mitochondrial membrane potential restored (P<0.01). In vivo experiments further confirmed the therapeutic effect of verbenalin on HCoV-229E-infected mice. Compared to the normal group, the model group showed a significant increase in the lung index (P<0.01), severe lung tissue injury, lung volume enlargement, and a significant increase in the expression of inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) (P<0.01). In contrast, in the verbenalin treatment groups, these pathological changes were significantly improved, with a reduction in the lung index (P<0.01), alleviation of lung tissue injury, reduced lung volume enlargement, and a significant decrease in inflammatory cytokine expression (P<0.01). Proteomics analysis revealed that, compared to the normal group, the model group showed enrichment in several antiviral immune-related signaling pathways, including the nuclear factor-κB (NF-κB) signaling pathway (P<0.05). Compared to the model group, the verbenalin treatment group showed enrichment in several signaling pathways related to inflammatory response and autophagy (P<0.05), suggesting that verbenalin may exert its antiviral and anti-inflammatory effects by regulating these pathways. ConclusionVerbenalin demonstrates significant therapeutic effects in both in vitro and in vivo HCoV-229E infection models, with its mechanism likely related to the NOD-like receptor protein 3 (NLRP3) inflammasome pathway and mitochondrial autophagy.
6.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals
7.Pathogenicity and Transcriptomic Profiling Revealed Activation of Apoptosis and Pyroptosis in Brain of Mice Infected with the Beta Variant of SARS-CoV-2.
Han LI ; Bao Ying HUANG ; Gao Qian ZHANG ; Fei YE ; Li ZHAO ; Wei Bang HUO ; Zhong Xian ZHANG ; Wen WANG ; Wen Ling WANG ; Xiao Ling SHEN ; Chang Cheng WU ; Wen Jie TAN
Biomedical and Environmental Sciences 2025;38(9):1082-1094
OBJECTIVE:
Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection frequently develop central nervous system damage, yet the mechanisms driving this pathology remain unclear. This study investigated the primary pathways and key factors underlying brain tissue damage induced by the SARS-CoV-2 beta variant (lineage B.1.351).
METHODS:
K18-hACE2 and C57BL/6 mice were intranasally infected with the SARS-CoV-2 beta variant. Viral replication, pathological phenotypes, and brain transcriptomes were analyzed. Gene Ontology (GO) analysis was performed to identify altered pathways. Expression changes of host genes were verified using reverse transcription-quantitative polymerase chain reaction and Western blot.
RESULTS:
Pathological alterations were observed in the lungs of both mouse strains. However, only K18-hACE2 mice exhibited elevated viral RNA loads and infectious titers in the brain at 3 days post-infection, accompanied by neuropathological injury and weight loss. GO analysis of infected K18-hACE2 brain tissue revealed significant dysregulation of genes associated with innate immunity and antiviral defense responses, including type I interferons, pro-inflammatory cytokines, Toll-like receptor signaling components, and interferon-stimulated genes. Neuroinflammation was evident, alongside activation of apoptotic and pyroptotic pathways. Furthermore, altered neural cell marker expression suggested viral-induced neuroglial activation, resulting in caspase 4 and lipocalin 2 release and disruption of neuronal molecular networks.
CONCLUSION
These findings elucidate mechanisms of neuropathogenicity associated with the SARS-CoV-2 beta variant and highlight therapeutic targets to mitigate COVID-19-related neurological dysfunction.
Animals
;
COVID-19/genetics*
;
Mice
;
Brain/metabolism*
;
Apoptosis
;
Mice, Inbred C57BL
;
SARS-CoV-2/physiology*
;
Pyroptosis
;
Gene Expression Profiling
;
Transcriptome
;
Male
;
Female
8.Quality evaluation of Yanyangke Mixture
Xiao-Lian LIANG ; Xiong-Bin GUI ; Yong CHEN ; Zheng-Teng YANG ; Jia-Bao MA ; Feng-Xian ZHAO ; Hai-Mei SONG ; Jia-Ru FENG
Chinese Traditional Patent Medicine 2024;46(6):1781-1787
AIM To evaluate the quality of Yanyangke Mixture.METHODS The HPLC fingerprints were established,after which cluster analysis,principal component analysis and partial least squares discriminant analysis were performed.The contents of liquiritin,rosmarinic acid,sheganoside,irisgenin,honokiol,monoammonium glycyrrhizinate,irisflorentin,isoliquiritin and magnolol were determined,the analysis was performed on a 35 ℃ thermostatic Agilent ZORBAX SB-C18 column(5 μm,250 mmx4.6 mm),with the mobile phase comprising of 0.1%phosphoric acid-acetonitrile flowing at 1 mL/min in a gradient elution manner,and multi-wavelength detection was adopted.RESULTS There were ten common peaks in the fingerprints for twelve batches of samples with the similarities of more than 0.9.Various batches of samples were clustered into three types,three principal components displayed the acumulative variance contribution rate of 87.448%,peaks 5、14(honokiol),3(liquiritin),11(monoammonium glycyrrhizinate)and 15(asarinin)were quality markers.Nine constituents showed good linear relationships within their own ranges(r>0.999 0),whose average recoveries were 98.5%-103.6%with the RSDs of 0.92%-1.7%.CONCLUSION This stable and reliable method can provide a basis for the quality control of Yanyangke Mixture.
9.Altered microRNA expression profiles of human spermatozoa in normal fertile men of different ages.
Ming-Jia ZHAO ; Yao-Nan ZHANG ; Yong-Ping ZHAO ; Xian-Bing CHEN ; Bao-Sheng HAN ; Ning DING ; Yi-Qun GU ; Shu-Song WANG ; Jing MA ; Mei-Ling LIU
Asian Journal of Andrology 2023;25(6):737-744
MicroRNAs (miRNAs) are mediators of the aging process. The purpose of this work was to analyze the miRNA expression profiles of spermatozoa from men of different ages with normal fertility. Twenty-seven donors were divided into three groups by age (Group A, n = 8, age: 20-30 years; Group B, n = 10, age: 31-40 years; and Group C, n = 9, age: 41-55 years) for high-throughput sequencing analysis. Samples from 65 individuals (22, 22, and 21 in Groups A, B, and C, respectively) were used for validation by quantitative real-time polymerase chain reaction (qRT-PCR). A total of 2160 miRNAs were detected: 1223 were known, 937 were newly discovered and unnamed, of which 191 were expressed in all donors. A total of 7, 5, and 17 differentially expressed microRNAs (DEMs) were found in Group A vs B, Group B vs C, and Group A vs C comparisons, respectively. Twenty-two miRNAs were statistically correlated with age. Twelve miRNAs were identified as age-associated miRNAs, including hsa-miR-127-3p, mmu-miR-5100_L+2R-1, efu-miR-9226_L-2_1ss22GA, cgr-miR-1260_L+1, hsa-miR-652-3p_R+1, pal-miR-9993a-3p_L+2R-1, hsa-miR-7977_1ss6AG, hsa-miR-106b-3p_R-1, hsa-miR-186-5p, PC-3p-59611_111, hsa-miR-93-3p_R+1, and aeca-mir-8986a-p5_1ss1GA. There were 9165 target genes of age-associated miRNAs. Gene Ontology (GO) analysis of the target genes identified revealed enrichment of protein binding, membrane, cell cycle, and so on. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of age-related miRNAs for target genes revealed 139 enriched pathways, such as signaling pathways regulating stem cell pluripotency, metabolic pathways, and the Hippo signaling pathway. This suggests that miRNAs play a key role in male fertility changes with increasing age and provides new evidence for the study of the mechanism of age-related male fertility decline.
Humans
;
Male
;
Young Adult
;
Adult
;
Middle Aged
;
MicroRNAs/genetics*
;
Signal Transduction/genetics*
;
Spermatozoa/metabolism*
;
Gene Expression Profiling

Result Analysis
Print
Save
E-mail