1.Laparoscopic treatment of diseases of the gallbladder and co-existent lesions of other abdominal viscera
Jing LI ; Ping LIANG ; Tonghan YANG ; Xiabing HUANG ; Xineng LIU ; Guohua ZUO ; Shengcai DING ; Hongyan LI ; Keqiang HAN
Chinese Journal of General Surgery 2000;0(12):-
Objective To investigate the feasibility of combined laparoscopic resection of gallbladder and other viscera. Methods The clinical data of 69 cases of combined laparoscopic resection of gallbladder and other viscera from January 1999 to July 2004 were reviewed retrospectively. Results The laparoscopic operation was successful in 69cases,and no case was converted to laparotomy.The average operation time was(85.5?18.6)min,and the time of return of gastrointestinal function was(27.3?6.2)h. The average hospitalization time after operation was(3.9?0.8)d.There were no operative or postoperative complications , and the therapeutic results were satisfactory. Conclusions The combined laparoscopic resection of the gall bladder and other viscera is safe and feasible. It is possible to treat gallbladder diseases and associated lesions of abdominal viscera simultaneously. The lesions of several organs can be treated at one operation. This can significantly decrease patients′ pain and lower the cost of treatment, and is worthy of wide usage.
2.Mechanism of the effect of Xuebijing injection on neurological function and survival of rats after cardiac arrest/cardiopulmonary resuscitation
Deqing HUANG ; Yuguang GAO ; Yuankan ZHANG ; Zhenglin WANG ; Haixia DENG ; Xiabing HUANG ; Yan PANG ; Lin WU
China Pharmacy 2024;35(6):653-658
OBJECTIVE To explore the potential mechanism of the effect of Xuebijing injection (XBJ) on neurological function and survival of rats after cardiac arrest (CA)/cardiopulmonary resuscitation (CPR) based on the S-nitrosoglutathione reductase (GSNOR)/S-nitrosoglutathione (GSNO) pathway. METHODS The CA/CPR rat model was established by ventricular fibrillation. Using a sham operation group as control, high-throughput sequencing was employed to analyze and mine the differentially expressed genes (DEGs). Enzyme-linked immunosorbent assay was used to determine the contents of GSNOR and GSNO in the hippocampus; the active components of XBJ were screened and subjected to molecular docking analysis with GSNOR. The rats successfully modeled using the same method were divided into model group (n=30), inhibitor (GSNOR inhibitor) group (n=30), XBJ group (n=30) and XBJ+inhibitor group (n=30), and a sham operation group (n=30) was set up. Neurological function was evaluated and survival status was recorded at 3 hours, 24 hours and 3 days after the first 89) drug intervention. The contents of GSNOR and GSNO in the hippocampus of rats were determined in each group at the 0191) above time points, and the relationship of the contents of GSNOR and GSNO with modified neurologic severity scale (mNSS) score was analyzed. RESULTS GSNOR coding gene was differentially expressed between the model group and the sham operation group. Compared with the sham operation group, GSNOR content increased significantly in the hippocampus of rats in model group, while GSNO content decreased significantly (P<0.05). The active components of XBJ, such as 4- methylenemiltirone and salviolone, could be bound to GSNOR protein, with the binding energy lower than -6 kcal/mol, mainly connected by hydrogen bonds. Animal experiments revealed that mNSS score and GSNOR levels in the hippocampus of rats in the model group were significantly higher than those in the sham operation group (P<0.05), while GSNO levels and survival rate were significantly lower than those in the sham operation group (P<0.05). The above indexes of rats were improved significantly in administration groups, the mNSS score in the XBJ group was significantly lower than that in the inhibitor group, the content changes of GSNOR and GSNO in the inhibitor group were more obvious than those in the XBJ group, and the various indicators in the XBJ+inhibitor group were significantly better than the XBJ group and the inhibitor group (P<0.05). GSNOR content was positively correlated with the mNSS score, and GSNO content was negatively correlated with the mNSS score (P<0.05). CONCLUSIONS XBJ can improve the neurological function of rats and enhance their survival rates after CA/CPR, the mechanism of which may be associated with the down-regulation of GSNOR and the up-regulation of GSNO.