1.Progress in the application of three-dimensional cell culture model in toxicity tests of xenobiotic.
Zi Wei WANG ; Rui ZHANG ; Wen CHEN
Chinese Journal of Preventive Medicine 2022;56(1):20-24
In the process of xenobiotic toxicity prediction and risk assessment, in vitro cell culture models possess high practical application value. With the rapid development of biological technologies such as three-dimensional (3D) bio-printing, organoid culture and organ-on-a-chip systems, in vitro cell culture models have made great progress. Sharing the similarities in structure, function and the physiological environment with tissues or organs in vivo, hazard identification and dose-response analysis based on 3D cell culture models provide access to more accurate toxicity data as a theoretical basis for risk assessment and risk management of chemicals. This review summarizes the establishment of three typical 3D cell culture models, i.e., human cell line-based co-culture model, 3D-printed scaffold-based cell culture model and organoids, and their application in toxicity tests of xenobiotics.
Cell Culture Techniques
;
Cell Culture Techniques, Three Dimensional
;
Cell Line
;
Humans
;
Toxicity Tests
;
Xenobiotics/toxicity*
2.Use of translational medicine in the early diagnosis of xenobiotic-induced intrauterine growth retardation.
Acta Pharmaceutica Sinica 2011;46(1):30-34
Translational medicine is an emerging idea in current medical research area. Typically, for the purpose of bridging the gap between basic and clinical research, it not only emphasizes the urgency and necessity to break the traditional working formats, including single subject centered research team and limited cooperation among different scientific groups, but also highlights a more close and frequent interaction between basic scientist and clinician. In order to reach this goal, the theory and method of systems biology should be employed. This paper mainly focused on a central issue that how to carry out an investigation on early clinical diagnosis of xenobiotic-induced intrauterine growth retardation (IUGR) by using research concept of translational medicine and method of systems biology. Briefly, a hypothesis of common mechanism of IUGR was first proposed and subsequent validation was performed via integrating--omics (e.g. genomics, proteomics, cytomics, metabonomics/metabolomics) and molecular biology techniques. Metabonomics was further utilized to explore IUGR biomarker and establish preliminary forecasting model by bioinformatics and computational biology, which is available for early diagnosis of IUGR and make a complement to current evaluation criteria.
Biomarkers
;
analysis
;
Computational Biology
;
Early Diagnosis
;
Female
;
Fetal Growth Retardation
;
chemically induced
;
diagnosis
;
metabolism
;
Genomics
;
Humans
;
Metabolomics
;
Pregnancy
;
Proteomics
;
Systems Biology
;
Translational Medical Research
;
Xenobiotics
;
toxicity
3.Research progress of zebrafish used in drug metabolism.
Acta Pharmaceutica Sinica 2011;46(9):1026-1031
Zebrafish is widely used as a model organism in the process of drug discovery. It expresses drug metabolizing enzymes like cytochrome P450 (CYP450), uridine 5'-diphospho-glucuronosyltransferase (UGT) and nuclear receptors like pregnane X receptor (PXR), aryl hydrocarbon receptor (AHR), etc. This article summarized the profiles of main drug metabolizing enzymes and nuclear receptors, and reviewed the advances on xenobiotics metabolism in zebrafish.
Animals
;
Cytochrome P-450 Enzyme System
;
metabolism
;
Embryo, Nonmammalian
;
drug effects
;
Glucuronosyltransferase
;
metabolism
;
Inactivation, Metabolic
;
Pharmaceutical Preparations
;
metabolism
;
Polychlorinated Dibenzodioxins
;
toxicity
;
Receptors, Aryl Hydrocarbon
;
metabolism
;
Receptors, Cytoplasmic and Nuclear
;
metabolism
;
Receptors, Steroid
;
metabolism
;
Teratogens
;
toxicity
;
Xenobiotics
;
metabolism
;
Zebrafish
;
embryology
;
metabolism
4.Current status and prospect of metabonomics.
Min XU ; Dong-Hai LIN ; Chang-Xiao LIU
Acta Pharmaceutica Sinica 2005;40(9):769-774
Animals
;
Biomarkers, Tumor
;
Drug Design
;
Drug Evaluation, Preclinical
;
Humans
;
Magnetic Resonance Spectroscopy
;
Metabolism
;
genetics
;
physiology
;
Neoplasms
;
diagnosis
;
metabolism
;
Pattern Recognition, Automated
;
Principal Component Analysis
;
Systems Biology
;
Xenobiotics
;
metabolism
;
toxicity
5.Recent Advances for Enhancing Drug Metabolizing Functions of Hepatocyte-like Cells Derived from Human Pluripotent Stem Cells.
Hanyang Medical Reviews 2015;35(4):196-206
Hepatocyte-like cells (HLCs) derived from human pluripotent stem cells are a promising cell source for drug screening and toxicity tests. Thus, various hepatic differentiating protocols have been developed, leading to a hepatic differentiation efficiency of approximately 90%. However, HLC drug metabolizing ability remains very low compared to human primary hepatocytes. In order to overcome this problem, several alternative methods, such as, co-culture, three-dimensional (3D) culture, bioreactor, nanochip-based, etc., have been developed, but optimization to produce fully functional HLCs is ongoing. Recently, our group reported that repeated exposure of HLCs to xenobiotics can improve the expression of hepatic metabolizing enzymes such as cytochrome P450s (CYPs) and glutathione S-transferases (GSTs). These data suggest that we should develop strategies for differentiating cells into mature HLCs by more closely mimicking in vivo fetal and postnatal liver development. Here, we review the current development of alternative methods for enhancing the drug metabolizing functions of HLCs derived from human embryonic stem cells, human-induced pluripotent stem cells, and mesenchymal stem cells as used for drug screening and toxicity tests.
Bioreactors
;
Coculture Techniques
;
Cytochrome P-450 Enzyme System
;
Drug Evaluation, Preclinical
;
Embryonic Stem Cells
;
Glutathione
;
Hepatocytes
;
Humans*
;
Liver
;
Mesenchymal Stromal Cells
;
Pluripotent Stem Cells*
;
Stem Cells
;
Toxicity Tests
;
Xenobiotics