1.Effectes of perfluorooctanoic acid exposure on mouse embryonic osteoblast precursor cells and its molecular mechanisms
Liming XUE ; Jiale XU ; Yuanjie LIN ; Yu'e JIN ; Dasheng LU ; Guoquan WANG
Shanghai Journal of Preventive Medicine 2025;37(7):629-635
ObjectiveTo explore the biological mechanism of bone loss caused by perfluorooctanoic acid (PFOA) through transcriptomic analysis, and to provide new insights into regulating perfluoroalkyl substances (PFAS) applications and the prevention of hazards affecting bone health. MethodsMouse embryonic osteoblast precursor cells (MC3T3-E1) were exposed to 0.1, 1, 10, and 100 μmol·L-¹ PFOA for 24 hours to assess the effects on cell viability and alkaline phosphatase (ALP) activity, and to determine the critical concentration of PFOA toxicity. The transcriptome sequencing (RNA-seq) was performed to identify differentially expressed genes (DEGs) induced by PFOA. Gene ontology (GO) analysis and gene set enrichment analysis (GSEA) were conducted to identify significantly affected gene pathways. Additionally, Seahorse XF metabolic phenotyping and reverse transcription polymerase chain reaction (RT-PCR) were used to validate the key pathways. ResultsExposure to 10 and 100 μmol·L-¹ PFOA significantly reduced the cell viability and ALP activity of MC3T3-E1 cells. Therefore, the results of transcriptomic analysis for 10 μmol‧L-1 PFOA exposure found that a total of 80 DEGs were identified, including 32 upregulated genes and 48 downregulated genes. According to GO analysis, PFOA mainly affected cellular components such as mitochondrion and nucleus, molecular functions involving GTPase activity and GTP binding, as well as biological process related to mRNA processing. GSEA identified the downregulation of the β-oxidation of fatty acid pathway in mitochondria. Metabolic phenotyping reserches showed that PFOA indeed reduced mitochondrial aerobic respiration capacity and adenosine triphosphate (ATP) production, and the ratio of ATP production from cellular aerobic respiration to glycolysis was significantly decreased as well. The mRNA expression of glucose metabolism-related genes (GK, G6PD, and CS), as well as fatty acid metabolism-related genes (CPT1A and CPT2), were significantly downregulated. ConclusionPFOA reduces bone formation by inhibiting energy metabolism and β-oxidation of fatty acid pathways in osteoblasts, whihc lays the foundation for revealing the mechanism of PFOA exposure induced bone loss.
2.Spicy food consumption and risk of vascular disease: Evidence from a large-scale Chinese prospective cohort of 0.5 million people.
Dongfang YOU ; Dianjianyi SUN ; Ziyu ZHAO ; Mingyu SONG ; Lulu PAN ; Yaqian WU ; Yingdan TANG ; Mengyi LU ; Fang SHAO ; Sipeng SHEN ; Jianling BAI ; Honggang YI ; Ruyang ZHANG ; Yongyue WEI ; Hongxia MA ; Hongyang XU ; Canqing YU ; Jun LV ; Pei PEI ; Ling YANG ; Yiping CHEN ; Zhengming CHEN ; Hongbing SHEN ; Feng CHEN ; Yang ZHAO ; Liming LI
Chinese Medical Journal 2025;138(14):1696-1704
BACKGROUND:
Spicy food consumption has been reported to be inversely associated with mortality from multiple diseases. However, the effect of spicy food intake on the incidence of vascular diseases in the Chinese population remains unclear. This study was conducted to explore this association.
METHODS:
This study was performed using the large-scale China Kadoorie Biobank (CKB) prospective cohort of 486,335 participants. The primary outcomes were vascular disease, ischemic heart disease (IHD), major coronary events (MCEs), cerebrovascular disease, stroke, and non-stroke cerebrovascular disease. A Cox proportional hazards regression model was used to assess the association between spicy food consumption and incident vascular diseases. Subgroup analysis was also performed to evaluate the heterogeneity of the association between spicy food consumption and the risk of vascular disease stratified by several basic characteristics. In addition, the joint effects of spicy food consumption and the healthy lifestyle score on the risk of vascular disease were also evaluated, and sensitivity analyses were performed to assess the reliability of the association results.
RESULTS:
During a median follow-up time of 12.1 years, a total of 136,125 patients with vascular disease, 46,689 patients with IHD, 10,097 patients with MCEs, 80,114 patients with cerebrovascular disease, 56,726 patients with stroke, and 40,098 patients with non-stroke cerebrovascular disease were identified. Participants who consumed spicy food 1-2 days/week (hazard ratio [HR] = 0.95, 95% confidence interval [95% CI] = [0.93, 0.97], P <0.001), 3-5 days/week (HR = 0.96, 95% CI = [0.94, 0.99], P = 0.003), and 6-7 days/week (HR = 0.97, 95% CI = [0.95, 0.99], P = 0.002) had a significantly lower risk of vascular disease than those who consumed spicy food less than once a week ( Ptrend <0.001), especially in those who were younger and living in rural areas. Notably, the disease-based subgroup analysis indicated that the inverse associations remained in IHD ( Ptrend = 0.011) and MCEs ( Ptrend = 0.002) risk. Intriguingly, there was an interaction effect between spicy food consumption and the healthy lifestyle score on the risk of IHD ( Pinteraction = 0.037).
CONCLUSIONS
Our findings support an inverse association between spicy food consumption and vascular disease in the Chinese population, which may provide additional dietary guidance for the prevention of vascular diseases.
Humans
;
Male
;
Female
;
Prospective Studies
;
Middle Aged
;
Aged
;
Vascular Diseases/etiology*
;
Risk Factors
;
China/epidemiology*
;
Adult
;
Proportional Hazards Models
;
Cerebrovascular Disorders/epidemiology*
;
East Asian People
3.Cross-modal hash retrieval of medical images based on Transformer semantic alignment.
Qianlin WU ; Lun TANG ; Qinghai LIU ; Liming XU ; Qianbin CHEN
Journal of Biomedical Engineering 2025;42(1):156-163
Medical cross-modal retrieval aims to achieve semantic similarity search between different modalities of medical cases, such as quickly locating relevant ultrasound images through ultrasound reports, or using ultrasound images to retrieve matching reports. However, existing medical cross-modal hash retrieval methods face significant challenges, including semantic and visual differences between modalities and the scalability issues of hash algorithms in handling large-scale data. To address these challenges, this paper proposes a Medical image Semantic Alignment Cross-modal Hashing based on Transformer (MSACH). The algorithm employed a segmented training strategy, combining modality feature extraction and hash function learning, effectively extracting low-dimensional features containing important semantic information. A Transformer encoder was used for cross-modal semantic learning. By introducing manifold similarity constraints, balance constraints, and a linear classification network constraint, the algorithm enhanced the discriminability of the hash codes. Experimental results demonstrated that the MSACH algorithm improved the mean average precision (MAP) by 11.8% and 12.8% on two datasets compared to traditional methods. The algorithm exhibits outstanding performance in enhancing retrieval accuracy and handling large-scale medical data, showing promising potential for practical applications.
Algorithms
;
Semantics
;
Humans
;
Ultrasonography
;
Information Storage and Retrieval/methods*
;
Image Processing, Computer-Assisted/methods*
4.Cross modal medical image online hash retrieval based on online semantic similarity.
Qinghai LIU ; Lun TANG ; Qianlin WU ; Liming XU ; Qianbin CHEN
Journal of Biomedical Engineering 2025;42(2):343-350
Online hashing methods are receiving increasing attention in cross modal medical image retrieval research. However, existing online methods often lack the learning ability to maintain semantic correlation between new and existing data. To this end, we proposed online semantic similarity cross-modal hashing (OSCMH) learning framework to incrementally learn compact binary hash codes of medical stream data. Within it, a sparse representation of existing data based on online anchor datasets was designed to avoid semantic forgetting of the data and adaptively update hash codes, which effectively maintained semantic correlation between existing and arriving data and reduced information loss as well as improved training efficiency. Besides, an online discrete optimization method was proposed to solve the binary optimization problem of hash code by incrementally updating hash function and optimizing hash code on medical stream data. Compared with existing online or offline hashing methods, the proposed algorithm achieved average retrieval accuracy improvements of 12.5% and 14.3% on two datasets, respectively, effectively enhancing the retrieval efficiency in the field of medical images.
Semantics
;
Humans
;
Algorithms
;
Information Storage and Retrieval/methods*
;
Diagnostic Imaging
;
Image Processing, Computer-Assisted/methods*
5.Advances in Radiotherapy for Extensive-stage Small Cell Lung Cancer in the Era of Immunotherapy.
Tingting CHEN ; Yanling YANG ; Haonan HAN ; Dongmin LIU ; Yajing YUAN ; Liming XU
Chinese Journal of Lung Cancer 2025;28(5):353-362
Small cell lung cancer (SCLC) is the thoracic malignant tumor and accounts for about 15% of lung malignancies and transfer often occurs by the time of diagnosis. Extensive stage-small cell lung cancer (ES-SCLC) accounts for about 2/3 of all SCLC. For many years, radiotherapy has occupied an important position in the treatment of SCLC, especially in the treatment of ES-SCLC, because SCLC is more sensitive to radiotherapy. However, in recent years, immune checkpoint inhibitor has shown more excellent antitumor activity in the treatment of ES-SCLC and become the mainstream argument for the treatment of ES-SCLC. However, will radiotherapy be buried by the times among the therapeutic approaches for ES-SCLC? In this article, we will review the clinical progress of radiotherapy, immunotherapy and combination therapy for ES-SCLC.
.
Humans
;
Small Cell Lung Carcinoma/therapy*
;
Lung Neoplasms/therapy*
;
Immunotherapy
;
Neoplasm Staging
;
Radiotherapy/methods*
;
Combined Modality Therapy
6.Deubiquitinase USP13 alleviates doxorubicin-induced cardiotoxicity through promoting the autophagy-mediated degradation of STING.
Liming LIN ; Jibo HAN ; Diyun XU ; Zimin FANG ; Bozhi YE ; Jinfu QIAN ; Xue HAN ; Julian MIN ; Xiaohong LONG ; Gaojun WU ; Guang LIANG
Acta Pharmaceutica Sinica B 2025;15(5):2545-2558
Doxorubicin (Dox) is an anthracycline drug widely applied in various malignancies. However, the fatal cardiotoxicity induced by Dox limits its clinical application. Post-transcriptional protein modification via ubiquitination/deubiquitination in cardiomyocytes mediates the pathophysiological process in Dox-induced cardiotoxicity (DIC). In this study, we aimed to clarify the regulatory role and mechanism of a deubiquitinating enzyme, ubiquitin-specific peptidase 13 (USP13), in DIC. RNA-seq analysis and experimental examinations identified that cardiomyocyte-derived USP13 positively correlated with DIC. Mice with cardiac-specific deletion of USP13 were subjected to Dox modeling. Adeno-associated virus serotype 9 (AAV9) carrying cTNT promoter was constructed to overexpress USP13 in mouse heart tissues. Cardiomyocyte-specific knockout of USP13 exacerbated DIC, while its overexpression mitigated DIC in mice. Mechanistically, USP13 deubiquitinates the stimulator of interferon genes (STING) and promotes the autolysosome-related degradation of STING, subsequently alleviating cardiomyocyte inflammation and death. Our study suggests that USP13 serves a cardioprotective role in DIC and indicates USP13 as a potential therapeutic target for DIC treatment.
7.Qingjie Fuzheng Granule prevents colitis-associated colorectal cancer by inhibiting abnormal activation of NOD2/NF-κB signaling pathway mediated by gut microbiota disorder.
Bin HUANG ; Honglin AN ; Mengxuan GUI ; Yiman QIU ; Wen XU ; Liming CHEN ; Qiang LI ; Shaofeng YAO ; Shihan LIN ; Tatyana Aleksandrovna KHRUSTALEVA ; Ruiguo WANG ; Jiumao LIN
Chinese Herbal Medicines 2025;17(3):500-512
OBJECTIVE:
This study investigates the efficacy and mechanisms of Qingjie Fuzheng Granules (QFG) in inhibiting colitis-associated colorectal cancer (CAC) development via RNA sequencing (RNA-seq) and 16S ribosomal RNA (rRNA) correlation analysis.
METHODS:
CAC was induced in BALB/c mice using azoxymethane (AOM) and dextran sulfate sodium (DSS), and QFG was administered orally to the treatment group. The effects of QFG on CAC were evaluated using disease index, histology, and serum T-cell ratios. RNA-seq and 16S rRNA analysis assessed the transcriptome and microbiome change. Key pharmacodynamic pathways were identified by integrating these data and confirmed via Western blotting and immunofluorescence. The link between microbiota and CAC-related markers was explored using linear discriminant analysis effect size and Spearman correlation analysis.
RESULTS:
Long-term treatment with QFG prevented AOM/DSS-induced CAC formation, reduced levels of interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), IL-6, and interferon γ (IFN-γ), and increased CD3+ and CD4+/CD8+ T cells ratio, without causing hepatic or renal toxicity. A 16S rRNA analysis revealed that QFG rebalanced the Firmicutes/Bacteroidetes ratio and mitigated AOM/DSS-induced microbiota disturbances. Transcriptomics and Western blotting analysis identified the nucleotide-binding oligomerization domain-containing protein 2 (NOD2)/nuclear factor kappa-B (NF-κB) pathway as key for QFG's treatment against CAC. Furthermore, QFG decreased the abundance of Bacilli, Bacillales, Staphylococcaceae, Staphylococcus, Lactobacillales, Aerococcus, Alloprevotella, and Akkermansia, while increasing Clostridiales, Lachnospiraceae, Lachnospiraceae_NK4A136_group, Ruminococcaceae, and Muribaculaceae, which were highly correlated with CAC-related markers or NOD2/NF-κB pathway.
CONCLUSION
By mapping the relationships between CAC, immune responses, microbiota, and key pathways, this study clarifies the mechanism of QFG in inhibiting CAC, highlighting its potential for clinical use as preventive therapy.
8.Clinicopathological features of BAP1 mutated clear cell renal cell carcinoma
Yanfeng BAI ; Menghan WENG ; Junjun HE ; Liming XU ; Chengdong CHANG ; Xiaodong TENG
Chinese Journal of Pathology 2024;53(8):797-802
Objective:To investigate the clinicopathological characteristics, immunophenotypes, molecular features, and differential diagnosis of BAP1 mutated clear cell renal cell carcinoma (CCRCC) for better understanding this entity.Methods:Clinical data, histological morphology, immunophenotypes and molecular characteristics of 18 BAP1 mutated CCRCC cases diagnosed at the Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China from January 2020 to December 2022 were analyzed. The patients were followed up.Results:There were 17 males and 1 female patients, aged from 39 to 72 years, with an average age of 56.3 years. Sixteen patients with primary CCRCC were followed up for an average of 24 months, 7 patients had metastases occurred from 4 to 22 months postoperatively. Thirteen of the 16 patients were alive at the time of the last follow-up while 3 patients died 12, 15, and 20 months after the surgery, respectively. One patient underwent retroperitoneal mass resection, but had lung metastasis 32 months after surgery. One case received cervical tumor resection and died at 22 months after the surgery. Characteristic CCRCC regions were identified in 11 of the 18 cases. The tumor cells were arranged in papillary, alveolar, and large nest patterns. Abundant lymphoid tissue, necrosis, and psammoma bodies were seen. Tumor cells showed abundant eosinophilic cytoplasm, and sometimes exhibited rhabdoid differentiation. Round eosinophilic globules were located in the cytoplasm and extracellular matrix. There were 9 cases with WHO/International Society of Urological Pathology grade 3, and 9 cases with grade 4. PAX8 (18/18), carbonic anhydrase 9 (CA9, 16/18), CD10 (18/18), and vimentin (18/18) were positive in the vast majority of tumors.TFE3 was expressed in 5 cases, with strong expression in only 1 case. Eighteen cases were all positive for P504s. Twelve cases harbored a BAP1 mutation combined with von Hippel-Lindau (VHL) mutation, and 2 cases had mutations in BAP1, VHL and PBRM1 simultaneously. SETD2 mutation was not found in any of the cases.Conclusions:BAP1 mutated CCRCC contained papillary, alveolar, and large nest patterns, eosinophilic cytoplasm, high-grade nucleoli, and collagen globules, with P504s positivity. In practical work, when encountering CCRCC containing these features, pathologists should consider the possibility of BAP1 mutations and conduct related molecular tests.
10.miR-185-5p alleviates the inflammatory response of acute gouty arthritis by inhibiting of IL-1β.
Nan HOU ; Xianghui MA ; Wei ZHOU ; Min YUAN ; Liming XU ; Huanxia SUN ; Yifan LIU ; Lining LIU ; Yanjun SHI ; Chunxian LI ; Yanfa FU
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):51-57
Objective To investigate the relationship between interleukin-1β (IL-1β) and miR-185-5p in the process of joint injury in acute gouty arthritis (AGA). Methods The serum miR-185-5p levels of 89 AGA patients and 91 healthy volunteers were detected by real-time quantitative PCR. The correlation between miR-185-5p expression level and VAS score or IL-1β expression level was evaluated by Pearson correlation coefficient method. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of miR-185-5p in AGA. THP-1 cells were induced by sodium urate (MSU) to construct an in vitro acute gouty inflammatory cell model. After the expression level of miR-185-5p in THP-1 cells was upregulated or downregulated by transfection of miR-185-5p mimics or inhibitors in vitro, inflammatory cytokines of THP-1 cells, such as IL-1β, IL-8 and tumor necrosis factor α (TNF-α), were detected by ELISA. The luciferase reporter gene assay was used to determine the interaction between miR-185-5p and the 3'-UTR of IL-1β. Results Compared with the healthy control group, the expression level of serum miR-185-5p in AGA patients was significantly reduced. The level of serum miR-185-5p was negatively correlated with VAS score and IL-1β expression level. The area under the curve (AUC) was 0.905, the sensitivity was 80.17% and the specificity was 83.52%. Down-regulation of miR-185-5p significantly promoted the expression of IL-1β, IL-8 and tumor necrosis factor (TNF-α), while overexpression of miR-185-5p showed the opposite results. Luciferase reporter gene assay showed that IL-1β was the target gene of miR-185-5p, and miR-185-5p negatively regulated the expression of IL-1β. Conclusion miR-185-5p alleviates the inflammatory response in AGA by inhibiting IL-1β.
Humans
;
3' Untranslated Regions
;
Arthritis, Gouty/genetics*
;
Interleukin-1beta/genetics*
;
Interleukin-8
;
Luciferases
;
MicroRNAs/genetics*
;
Tumor Necrosis Factor-alpha

Result Analysis
Print
Save
E-mail