1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Small bowel video keyframe retrieval based on multi-modal contrastive learning.
Xing WU ; Guoyin YANG ; Jingwen LI ; Jian ZHANG ; Qun SUN ; Xianhua HAN ; Quan QIAN ; Yanwei CHEN
Journal of Biomedical Engineering 2025;42(2):334-342
Retrieving keyframes most relevant to text from small intestine videos with given labels can efficiently and accurately locate pathological regions. However, training directly on raw video data is extremely slow, while learning visual representations from image-text datasets leads to computational inconsistency. To tackle this challenge, a small bowel video keyframe retrieval based on multi-modal contrastive learning (KRCL) is proposed. This framework fully utilizes textual information from video category labels to learn video features closely related to text, while modeling temporal information within a pretrained image-text model. It transfers knowledge learned from image-text multimodal models to the video domain, enabling interaction among medical videos, images, and text data. Experimental results on the hyper-spectral and Kvasir dataset for gastrointestinal disease detection (Hyper-Kvasir) and the Microsoft Research video-to-text (MSR-VTT) retrieval dataset demonstrate the effectiveness and robustness of KRCL, with the proposed method achieving state-of-the-art performance across nearly all evaluation metrics.
Humans
;
Video Recording
;
Intestine, Small/diagnostic imaging*
;
Machine Learning
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
7.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
8.Effects of nebulized self-developed Zangsiwei Qingfei Mixture on airway inflammation in cigarette smoke-induced COPD mice and a network pharmacology analysis.
Meizhi LI ; Fei PENG ; Quan ZHANG ; Yanna WU ; Jingping SUN ; Si LEI ; Shangjie WU
Journal of Central South University(Medical Sciences) 2025;50(7):1113-1125
OBJECTIVES:
Chronic obstructive pulmonary disease (COPD) is a major chronic respiratory condition with high morbidity and mortality, imposing a serious economic and public health burden. The World Health Organization ranks COPD among the top 4 chronic diseases worldwide. Zangsiwei Qingfei Mixture (ZSWQF), a novel Tibetan herbal formulation independently developed by our research team, has shown therapeutic potential for chronic respiratory diseases. This study aims to evaluate the effects of aerosolized ZSWQF on cigarette smoke-induced COPD in mice and explore its underlying mechanisms.
METHODS:
Thirty C57 mice were randomly divided into a Control group, a COPD group, and a ZSWQF group. The Control group received saline aerosol inhalation without cigarette smoke exposure; both the COPD group and the ZSWQF group were exposed to cigarette smoke, with the former receiving saline inhalation and the latter treated with ZSWQF aerosol. White blood cell (WBC) count was performed using a fully automatic blood cell analyzer. Serum, alanine transaminase (ALT), and serum creatinine (SCr), as well as interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α levels in serum and bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). BALF cell classification was determined using a hematology analyzer. Lung function was assessed with a small animal pulmonary function system, including airway resistance (RI) and cyclic dynamic compliance (CyDN). Lung tissues were stained with hematoxylin and eosin (HE), and mean linear intercept (MLI) and destruction index (DI) were calculated to evaluate morphological changes. Network pharmacology was applied to identify disease-related and ZSWQF-related targets, followed by intersection and protein-protein interaction (PPI) network analysis, and enrichment analysis of biological functions and pathways. Primary type II alveolar epithelial cell (AEC II) from SD rats were isolated and divided into a Control group, a lipopolysaccharide (LPS) group, a normal serum group, a water extract of ZSWQF (W-ZSWQF) group, a ZSWQF containing serum group, and a MLN-4760 [angiotensin-converting enzyme (ACE) 2 inhibitor]. Western blotting was performed to assess protein expression of ACE, p38 [a mitogen-activated protein kinase (MAPK)], phospho (p)-p38, extracellular signal-regulated kinases 1 and 2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase (JNK), p-JNK, inhibitor of nuclear factor-kappa B alpha (IκBα), p-IκBα, and p-p65 subunit of nuclear factor-kappa B (NF-κBp65).
RESULTS:
WBC counts were significantly higher in the COPD group than in controls (P<0.01) and decreased following ZSWQF treatment (P<0.05). No significant intergroup differences were found in organ weights, ALT, or SCr (all P>0.05). Serum and BALF levels of IL-6, IL-8, and TNF-α, as well as total BALF cells, neutrophils, and macrophages, were elevated in the COPD group compared with controls and reduced by ZSWQF treatment (P<0.05). COPD mice exhibited increased RI, decreased CyDN, marked alveolar congestion, inflammatory infiltration, thickened septa, and higher MLI and DI values versus controls (P<0.05); ZSWQF treatment significantly reduced MLI and DI (P<0.05). Network pharmacology identified 151 potential therapeutic targets for ZSWQF against COPD, with key nodes including TNF, IL-6, protein kinase B (Akt) 1, albumin (ALB), tumor protein p53 (TP53), non-receptor tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT) 3, matrix metalloproteinase (MMP)-9, and beta-catenin (CTNNB1). Enrichment analysis indicates involvement of cancer-related, phosphatidylinositol 3-kinase (PI3K)/Akt, hypoxia-inducible factor (HIF)-1, calcium, and MAPK signaling pathways. Western blotting results showed that compared with the LPS group, AEC II treated with ZSWQF-containing serum exhibited decreased expression of ACE, p-p38/p38, p-ERK1/2/ERK1/2, p-JNK/JNK, p-IκBα/IκBα, and p-NF-κBp65, while ACE2 expression was upregulated, consistent with the MAPK/nuclear factor-kappa B (NF-κB) pathway regulation predicted by network pharmacology.
CONCLUSIONS
Aerosolized ZSWQF provides protective effects in COPD mice by reducing airway inflammation and remodeling.
Animals
;
Pulmonary Disease, Chronic Obstructive/etiology*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Mice, Inbred C57BL
;
Male
;
Network Pharmacology
;
Smoke/adverse effects*
;
Bronchoalveolar Lavage Fluid
;
Administration, Inhalation
;
Inflammation/drug therapy*
;
Tumor Necrosis Factor-alpha
;
Lung/drug effects*
;
Interleukin-6/blood*
9.Autonomous drug delivery and scar microenvironment remodeling using micromotor-driven microneedles for hypertrophic scars therapy.
Ting WEN ; Yanping FU ; Xiangting YI ; Ying SUN ; Wanchen ZHAO ; Chaonan SHI ; Ziyao CHANG ; Beibei YANG ; Shuling LI ; Chao LU ; Tingting PENG ; Chuanbin WU ; Xin PAN ; Guilan QUAN
Acta Pharmaceutica Sinica B 2025;15(7):3738-3755
Hypertrophic scar is a fibrous hyperplastic disorder that arises from skin injuries. The current therapeutic modalities are constrained by the dense and rigid scar tissue which impedes effective drug delivery. Additionally, insufficient autophagic activity in fibroblasts hinders their apoptosis, leading to excessive matrix deposition. Here, we developed an active microneedle (MN) system to overcome these challenges by integrating micromotor-driven drug delivery with autophagy regulation to remodel the scar microenvironment. Specifically, sodium bicarbonate and citric acid were introduced into the MNs as a built-in engine to generate CO2 bubbles, thereby enabling enhanced lateral and vertical drug diffusion into dense scar tissue. The system concurrently encapsulated curcumin (Cur), an autophagy activator, and triamcinolone acetonide (TA), synergistically inducing fibroblast apoptosis by upregulating autophagic activity. In vitro studies demonstrated that active MNs achieved efficient drug penetration within isolated scar tissue. The rabbit hypertrophic scar model revealed that TA-Cur MNs significantly reduced the scar elevation index, suppressed collagen I and transforming growth factor-β1 (TGF-β1) expression, and elevated LC3 protein levels. These findings highlight the potential of the active MN system as an efficacious platform for autonomous augmented drug delivery and autophagy-targeted therapy in fibrotic disorder treatments.
10.Food-derived bioactive peptides: health benefits, structure‒activity relationships, and translational prospects.
Hongda CHEN ; Jiabei SUN ; Haolie FANG ; Yuanyuan LIN ; Han WU ; Dongqiang LIN ; Zhijian YANG ; Quan ZHOU ; Bingxiang ZHAO ; Tianhua ZHOU ; Jianping WU ; Shanshan LI ; Xiangrui LIU
Journal of Zhejiang University. Science. B 2025;26(11):1037-1058
Food-derived bioactive peptides (FBPs), particularly those with ten or fewer amino acid residues and a molecular weight below 1300 Da, have gained increasing attention for their safe, diverse structures and specific biological activities. The development of FBP-based functional foods and potential medications depends on understanding their structure‒activity relationships (SARs), stability, and bioavailability properties. In this review, we provide an in-depth overview of the roles of FBPs in treating various diseases, including Alzheimer's disease, hypertension, type 2 diabetes mellitus, liver diseases, and inflammatory bowel diseases, based on the literature from July 2017 to Mar. 2023. Subsequently, attention is directed toward elucidating the associations between the bioactivities and structural characteristics (e.g., molecular weight and the presence of specific amino acids within sequences and compositions) of FBPs. We also discuss in silico approaches for FBP screening and their limitations. Finally, we summarize recent advancements in formulation techniques to improve the bioavailability of FBPs in the food industry, thereby contributing to healthcare applications.
Humans
;
Peptides/therapeutic use*
;
Structure-Activity Relationship
;
Functional Food
;
Diabetes Mellitus, Type 2/drug therapy*
;
Biological Availability
;
Alzheimer Disease/drug therapy*
;
Inflammatory Bowel Diseases/drug therapy*
;
Hypertension/drug therapy*
;
Liver Diseases/drug therapy*
;
Bioactive Peptides, Dietary

Result Analysis
Print
Save
E-mail