1.Advance of researches in nitric oxide biological function on wound repair.
Xinyan TANG ; Li YANG ; K L Paul SUNG
Journal of Biomedical Engineering 2010;27(1):211-214
Nitric oxide (NO) is a short-life free radical that acts as the small biological molecule, and exists in body extensively. Since its discovery over 20 years ago, NO has been found to play an important regulation role in angiogenesis, nerve and immune system. The subsequent studies also showed that NO exerted an important biological action in wound repairing and healing, which involved in the following phases of wound repair, inflammation, cell proliferation, matrix deposition and remodeling. This paper reviews recent findings from in vitro & in vivo studies of NO in wound repair, and the biological function and mechanisms of NO in wound repair.
Animals
;
Humans
;
Neovascularization, Physiologic
;
Nitric Oxide
;
metabolism
;
physiology
;
therapeutic use
;
Wound Healing
;
drug effects
;
physiology
2.Tissue culture and plant regeneration of Rhodiola henryi.
Lianwei KANG ; Cuiqin LI ; Zhezhil WANG
China Journal of Chinese Materia Medica 2010;35(24):3250-3254
OBJECTIVETo study the tissue culture and plant regeneration technologies and optimizing propagation system in vitro of Rhodiola henryi.
METHODOrthogonal experiment designs were used in the study of Rh. henryi callus induction, shoot formation and rooting, and the data were analyzed by range analysis and variance analysis.
RESULTThe optimal media to induce multiple callus from leaves were MS supplemented with 2,4-D 1.5 mg x L(-1) and 6-BA 0.5 mg x L the effect of the three factors was in sequence of explants > 2,4-D > 6-BA; The optimal media to induce multiple buds from stems were MS supplemented with 6-BA 1.5 mg x L\/1-1 NAA >6-BA; Plantlets were rooted on 1/2MS supplemented with IBA 1.0 mg x L-1, and rooting rate reached to 90% or more and transplant survival rate of plantlet reached 98% or more.
CONCLUSIONAn efficient system for tissue culture and plant regeneration of Rh. henryi was initially established.
Culture Media ; pharmacology ; Regeneration ; drug effects ; Rhodiola ; drug effects ; physiology ; Tissue Culture Techniques ; methods ; Wound Healing ; drug effects
3.The effect of experimental trypsin on the regeneration of hyaline articular cartilage.
Yonsei Medical Journal 1990;31(2):103-109
There is evidence from other studies that some degree of cartilage healing may take place after the initiation of an inflammatory response. It is postulated that the induction of the platelet-cartilage interaction may eventuate in cartilage repair. The treatment of fresh articular cartilage with proteolytic enzymes rendered the tissue active as a platelet aggregant. During platelet aggregation a host of active substances are released which are known to play a role in the inflammatory response (Thompson 1975). This study was undertaken to evaluate the effects of trypsin on the surface injury of rabbit hyaline cartilage. The results were as follows: 1) Hyaline cell regeneration was observed only in the group treated with trypsin and blood; 2) Hyaline cartilage regeneration did not occur in the group treated with a single injection of trypsin or blood; 3) There was no significant damage to the healthy articular cartilage by the single injection of trypsin or blood, or both; and 4) Platelets do not adhere to cartilage and superficial damaged cartilage does not induce platelet aggregation.
Animal
;
Cartilage, Articular/*drug effects/physiology/ultrastructure
;
Cell Division
;
Mitosis/physiology
;
Platelet Aggregation/drug effects
;
Rabbits
;
Regeneration
;
Trypsin/*pharmacology
;
Wound Healing/drug effects/physiology
4.Effect of human hepatocyte growth factor on promoting wound healing and preventing scar formation by adenovirus-mediated gene transfer.
Xiaoqin HA ; Yuanmin LI ; Miaofen LAO ; Bin YUAN ; Chu-Tse WU
Chinese Medical Journal 2003;116(7):1029-1033
OBJECTIVETo evaluate the effects of hepatocyte growth factor (HGF) on the prevention of scar formation and the promotion of wound healing by gene transfer.
METHODSA total of 12 female New Zealand rabbits were used in this study. Rabbits were anesthetized with an intravenous injection of sodium pentobarbital, and identical wounds were made over the ventral surface of each ear. Five circular wounds, 7 mm in diameter, were created in each ear by excision through the skin to the underlying cartilage using sterile technique. After the surgical procedures, 10 of the rabbits were randomly allocated to five groups, with 2 rabbits in each group: Ad-HGF group 1, Ad-HGF group 2, Ad-HGF group 3, Ad-GFP (a reporter gene) group and the solvent group. Immediately after surgery, 6 x 10(7) pfu Ad-HGF, 6 x 10(8) pfu Ad-HGF, 6 x 10(9) pfu of Ad-HGF, 6 x 10(9) pfu of Ad-GFP, or same volume of solvent (PBS, pH 7.2) was applied once to each wound in groups 1 to 5, respectively. One additional rabbit was used to evaluate the transfer efficiency of the adenovirus vector by transferring Ad-GFP (6 x 10(9) pfu) into its wounds. Ice slides of wounds from this animal were observed under fluorescence microscopy. Another additional rabbit was used to evaluate the expression of HGF and TGFbeta1 after transferring Ad-HGF (6 x 10(9) pfu) into each of its wound. Immunohistochemistry was used for detection.
RESULTSThe effect of HGF on reducing excessive dermal scarring was observed by adenovirus-mediated gene transfer. Transfection of the human HGF cDNA into skin wounds through an adenoviral vector suppressed the over-expression of TGFbeta1, which plays an essential role in the progression of dermal fibrogenesis. Application of HGF to the wounds significantly enhanced wound healing and inhibited over scarring.
CONCLUSIONHGF gene therapy could be a new approach for preventing excessive dermal scarring in wound healing.
Animals ; Cicatrix ; prevention & control ; Female ; Gene Transfer Techniques ; Hepatocyte Growth Factor ; pharmacology ; Rabbits ; Random Allocation ; Wound Healing ; drug effects ; physiology
5.Biologic effects of different concentrations of putrescine on human umbilical vein endothelial cells.
Jianxia CHEN ; Xinzhou RONG ; Email: XINZHOURO@163.COM. ; Guicheng FAN ; Songze LI ; Tao ZHANG ; Qinghui LI
Chinese Journal of Burns 2015;31(6):446-450
OBJECTIVETo explore the effects of different concentrations of putrescine on proliferation, migration, and apoptosis of human umbilical vein endothelial cells (HUVECs).
METHODSHUVECs were routinely cultured in vitro. The 3rd to the 5th passage of HUVECs were used in the following experiments. (1) Cells were divided into 500, 1 000, and 5 000 µg/mL putrescine groups according to the random number table (the same grouping method was used for following grouping), with 3 wells in each group, which were respectively cultured with complete culture solution containing putrescine in the corresponding concentration for 24 h. Morphology of cells was observed by inverted optical microscope. (2) Cells were divided into 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1 000.0 µg/mL putrescine groups, and control group, with 4 wells in each group. Cells in the putrescine groups were respectively cultured with complete culture solution containing putrescine in the corresponding concentration for 24 h, and cells in control group were cultured with complete culture solution with no additional putrescine for 24 h. Cell proliferation activity (denoted as absorption value) was measured by colorimetry. (3) Cells were divided (with one well in each group) and cultured as in experiment (2), and the migration ability was detected by transwell migration assay. (4) Cells were divided (with one flask in each group) and cultured as in experiment (2), and the cell apoptosis rate was determined by flow cytometer. Data were processed with one-way analysis of variance, Kruskal-Wallis test, and Dunnett test.
RESULTS(1) After 24-h culture, cell attachment was good in 500 µg/mL putrescine group, and no obvious change in the shape was observed; cell attachment was less in 1 000 µg/mL putrescine group and the cells were small and rounded; cells in 5 000 µg/mL putrescine group were in fragmentation without attachment. (2) The absorption values of cells in 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0, 1 000.0 µg/mL putrescine groups, and control group were respectively 0.588 ± 0.055, 0.857 ± 0.031, 0.707 ± 0.031, 0.662 ± 0.023, 0.450 ± 0.019, 0.415 ± 0.014, 0.359 ± 0.020, 0.204 ± 0.030, and 0.447 ± 0.021, with statistically significant differences among them (χ(2) = 6.86, P = 0.009). The cell proliferation activity in 0.5, 1.0, 5.0, and 10.0 µg/mL putrescine groups was higher than that in control group (P < 0.05 or P < 0.01). The cell proliferation activity in 500.0 and 1 000.0 µg/mL putrescine groups was lower than that in control group (with P values below 0.01). The cell proliferation activity in 50.0 and 100.0 µg/mL putrescine groups was close to that in control group (with P values above 0.05). (3) There were statistically significant differences in the numbers of migrated cells between the putrescine groups and control group (F = 138.662, P < 0.001). The number of migrated cells was more in 1.0, 5.0, and 10.0 µg/mL putrescine groups than in control group (with P value below 0.01). The number of migrated cells was less in 500.0 and 1 000.0 µg/mL putrescine groups than in control group (with P value below 0.01). The number of migrated cells in 0.5, 50.0, and 100.0 µg/mL putrescine groups was close to that in control group (with P values above 0.05). (4) There were statistically significant differences in the apoptosis rate between the putrescine groups and control group (χ(2)=3.971, P=0.046). The cell apoptosis rate was lower in 0.5, 1.0, 5.0, and 10.0 µg/mL putrescine groups than in control group (with P values below 0.05). The cell apoptosis rate was higher in 500.0 and 1 000.0 µg/mL putrescine groups than in control group (with P values below 0.01). The cell apoptosis rates in 50.0 and 100.0 µg/mL putrescine groups were close to the cell apoptosis rate in control group (with P values above 0.05).
CONCLUSIONSLow concentration of putrescine can remarkably enhance the ability of proliferation and migration of HUVECs, while a high concentration of putrescine can obviously inhibit HUVECs proliferation and migration, and it induces apoptosis.
Apoptosis ; drug effects ; Biological Products ; Cell Line ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Flow Cytometry ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; Humans ; Putrescine ; administration & dosage ; adverse effects ; pharmacology ; physiology ; Skin ; cytology ; Wound Healing
6.The influence of N-terminal sequence peptide of alpha-smooth muscle actin on wound contraction.
Chinese Journal of Burns 2002;18(3):166-169
OBJECTIVETo explore the influence of NH2-terminal sequence Ac-EEED peptide of alpha-smooth muscle actin (alpha-SMA) which is the specific antibody of alpha-SMA on wound contraction.
METHODS(1) Full skin loss wounds were created on the backs of Wistar rats. The wound edge was fixed by a hard plastic frame. The wounds in experimental group (EG) were applied topically with alpha-SMA fusion peptide containing Ac-DEDE at N-terminal (alpha-SMA -FP, 1 mg/ml) during 8 to 10 days after the injury, while gel only (0.5 mg/ml) and alpha-SMA -FP (1 mg/ml) were topically applied to the wounds in control group 1 and 2, respectively. The wound areas were determined at 1, 6 and 24 hours after the removal at the fixing frame at 10 days after injury. The wound contraction rates were determined by comparing the wound area after and before the frame removal. (2) The fibroblasts in the granulation tissue were isolated 9 days after injury and were cultured in deformable silicone substrate dish. The changes in cell contraction were observed before and after the fibroblasts were treated with alpha-SMA -FP (1 mg/ml) and after alpha-SMA -FP was washed away.
RESULTS(1) The wound contraction rates exhibited no evident difference at 1, 6 and 24 hours after the removal of fixing frame in control group 1 and 2 (P < 0.05). (2) There exhibited numerous wrinkles within the fibroblasts under the microscope before alpha-SMA -FP processing. But the wrinkles decreased and became shallow remarkably at 5 mins after alpha-SMA -FP processing and disappeared completely 30 mins later. The wrinkles recovered gradually after alpha-SMA -FP was removed. But the cells treated by gel and alpha-SKA -FP exhibited no such phenomenon.
CONCLUSIONalpha-SMA-AcEEED might specifically inhibit the contraction of granulation tissue and inhibit the contraction of fibroblasts, which was reversible.
Actins ; pharmacology ; Animals ; Disease Models, Animal ; Fibroblasts ; drug effects ; physiology ; Granulation Tissue ; drug effects ; Male ; Muscle, Smooth ; chemistry ; physiology ; Peptide Fragments ; pharmacology ; Rats ; Rats, Wistar ; Wound Healing ; drug effects
7.Recombinant tetra-cell adhesion motifs supports adhesion, migration and proliferation of keratinocytes/fibroblasts, and promotes wound healing.
Mi Yeon JUNG ; Narendra THAPA ; Jung Eun KIM ; Jung Duk YANG ; Byung Chae CHO ; In San KIM
Experimental & Molecular Medicine 2007;39(5):663-672
An extracellular matrix protein plays an important role in skin wound healing. In the present study, we engineered a recombinant protein encompassing the 9th and 10th type III domains of fibronectin, and 4th FAS1 domain of beta ig-h3. This recombinant protein, in total, harbors four known-cell adhesion motifs for integrins: Pro-His-Ser-Arg-Asn (PHSRN) and Arg-Gly-Asp (RGD) in 9th and 10th type III domains of fibronectin, respectively, and Glu-Pro-Asp-Ile-Met (EPDIM) and Try-His (YH) in 4th FAS1 domain of big-h3, were designated to tetra-cell adhesion motifs (T-CAM). In vitro studies showed T-CAM supporting adhesion, migration and proliferation of different cell types including keratinocytes and fibroblasts. In an animal model of full-thickness skin wound, T-CAM exhibited excellent wound healing effects, superior to both 4th FAS1 domain of beta ig-h3 or 9th and 10th type III domains of fibronectin. Based on these results, T-CAM can be applied where enhancement of cell adhesion, migration and proliferation are desired, and it could be developed into novel wound healing drug.
Amino Acid Motifs
;
Animals
;
Cell Adhesion/*drug effects
;
Cell Line
;
Cell Movement/*drug effects
;
Cell Proliferation/*drug effects
;
Extracellular Matrix Proteins/chemistry/genetics/pharmacology
;
Fibroblasts/cytology/drug effects/physiology
;
Fibronectins/chemistry/genetics/*pharmacology
;
Humans
;
Keratinocytes/cytology/drug effects/physiology
;
Mice
;
NIH 3T3 Cells
;
Rabbits
;
Recombinant Fusion Proteins/chemistry/genetics/pharmacology
;
Transforming Growth Factor beta/chemistry/genetics/pharmacology
;
Wound Healing/*drug effects/physiology
8.Clinical study of external application of Qiyu oil gauze for promoting post-operational healing in patients with anal fistula.
Shao-tang LI ; Bo CAO ; Wen-ling DENG ; Zhi LI
Chinese journal of integrative medicine 2009;15(4):279-283
OBJECTIVETo observe the effects of the external application of Qiyu oil gauze (QYOG) for promoting post-operational healing in patients with anal fistula and to explore its mechanism of action so as to provide a beneficial scientific basis for its wide use.
METHODSSixty patients with anal fistula scheduled to receive simple low anal fistulectomy were equally assigned, according to the sequence of hospitalization, to the tested group and the control group, and their wounds were classified according to longitudinal diameter into three grades (Grade I with a diameter below 2 cm; Grade II, 2-5 cm; and Grade III, over 5 cm). After the operation was completed and the operational wound was sterilized with benzalkonium bromide, the wound substratum was packed with QYOG in the test group and with vaseline gauze in the control group. The packing gauze was changed every day till the wound was healed. The healing time of the patients was observed, and the number of capillaries and positive cell percentages of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF) in wound granulation tissues were counted on the 5th day after the operation.
RESULTSThe wound healing time was 17.80+/-5.46 days in the test group, which was significantly shorter than that in the control group (21.90+/-6.32 days, P<0.01). The number of capillaries and positive cell percentages of VEGF and bFGF in wound granulation tissues on the 5th day in the tested group were higher than those in the control group (P<0.01), though the difference in EGF between the two groups was insignificant (P>0.05).
CONCLUSIONQYOG could shorten the wound healing time after anal fistulectomy, which suggests that it participates in the stimulation of wound granulation tissues to produce VEGF and bFGF, and thus promotes capillary genesis and improves blood circulation in wounds so as to promote wound healing.
Administration, Topical ; Adult ; Bandages ; Drugs, Chinese Herbal ; administration & dosage ; Female ; Granulation Tissue ; drug effects ; Humans ; Male ; Middle Aged ; Plant Oils ; administration & dosage ; Postoperative Care ; methods ; Rectal Fistula ; drug therapy ; rehabilitation ; surgery ; Time Factors ; Treatment Outcome ; Wound Healing ; drug effects ; physiology
9.Effects of zhuhong ointment on MMPs activities and production by HSF.
Yan LIN ; Miao-Ke DAI ; Xiu-Juan HE ; Ping LI
China Journal of Chinese Materia Medica 2013;38(11):1795-1799
HuaFu Shengji is the primary traditional Chinese medicine (TCM) therapy for treating chronic skin ulcer. The high activities of the protein enzyme in the wound fluids is one of the main cause of healing delay. In order to investigate the effect of TCM Zhuhong ointment for promoting wound healing. This research focused on its influence on matrix metalloproteinase (MMP) activities in wound fluids with TCM Yang syndromes, directly on the activated MMP-1,2 activities in vitro and on MMP-1,-2,-9 production by HSF. 8 wound fluid samples were collected, which were diagnosed Yang Syndromes in TCM. Wound fluid activities of MMP-2 and MMP-9 were measured by gelatin zymogram assay. MMP-1 and MMP-2 activities in vitro were measured by substrate cleavage. CCK-8 was used to observe the toxicity of Zhuhong ointment on HSF. MMP-1,-2,-9 production by HSF were detected by confocal microscope. Zhuhong ointment from 1 to 25 g x L(-1) obviously inhibited MMP-2 activity in wound fluid. When Zhuhong ointment was over 5 g x L(-1), it showed significantly inhibitory effect on wound fluid MMP-9 activity. In vitro study, when the mercury concentration was 320 mg x L(-1), Zhuhong ointment solution directly inhibited both MMP-1 activity and MMP-2. But mercury concentration from 0.51-2.56 mg x L(-1), it could activate MMP-1 activity, and from 0.51-64 mg x L(-1), activate MMP-2 activity instead. The mercury concentration when Zhuhong ointment saturated in DMEM was 39.6 mg x L(-1). When the mercury concentration was over 1.23 mg x L(-1), Zhuhong ointment showed toxicity to HSF. At 1.23, 0.62, 0.31 mg x L(-1) of mercury concentration, it increased MMP-1 expression by HSF, and at 1.23, 0.62 mg x L(-1), decreased MMP-2 expression. However, at 1.23, 0.62, 0.31 mg x L(-1), it decreased MMP-9 expression. At higher concentration, Zhuhong ointment can inhibit MMP-2, MMP-9 activities in wound fluid with dose-dependent way and show a direct inhibitory effect on activated MMP-1 and MMP-2 in vitro. But at a lower concentration, it showed two-way adjustment, with increased MMP-1, MMP-2 activities and its expression by HSF and decreased MMP-9 activity.
Body Fluids
;
enzymology
;
Cells, Cultured
;
Dermatitis
;
drug therapy
;
enzymology
;
physiopathology
;
Drugs, Chinese Herbal
;
pharmacology
;
Fibroblasts
;
drug effects
;
enzymology
;
physiology
;
Humans
;
Matrix Metalloproteinase 1
;
metabolism
;
Matrix Metalloproteinase 2
;
metabolism
;
Matrix Metalloproteinase 9
;
metabolism
;
Wound Healing
;
drug effects
10.Article Effect and Mechanism of Ganoderma lucidum Polysaccharides on Human Fibroblasts and Skin Wound Healing in Mice.
Feng HU ; Yu YAN ; Chu-Wang WANG ; Yu LIU ; Jing-Jing WANG ; Fang ZHOU ; Qing-Hai ZENG ; Xiao ZHOU ; Jia CHEN ; Ai-Jun WANG ; Jian-da ZHOU
Chinese journal of integrative medicine 2019;25(3):203-209
OBJECTIVE:
To investigate the effects of Ganoderma lucidum polysaccharides (GL-PS) on human fibroblasts and skin wound healing in Kunming male mice and to explore the putative molecular mechanism.
METHODS:
Primary human skin fibroblasts were cultured. The viability of fibroblasts treated with 0, 10, 20, 40, 80, and 160 μg/mL of GL-PS, respectively were detected by 3-4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-Htetrazolium bromide (MTT). The migration ability of fibroblasts treated with 0, 10, 20, and 40 μg/mL of GL-PS were measured by transwell assay. The secretion of the C-terminal peptide of procollagen type I (CICP) and transforming growth factor-β1 (TGF-β1) in the cell supernatant was tested by enzyme-linked immunosorbent assay. The expression of β-catenin was detected by Western blot. Furthermore, the Kunming mouse model with full-layer skin resection trauma was established, and was treated with 10, 20, and 40 mg/mL of GL-PS, respectively as external use. The size of the wound was measured daily, complete healing time in each group was recorded and the percentage of wound contraction was calculated.
RESULTS:
Compared with the control group, 10, 20, and 40 μg/mL of GL-PS significantly increased the viability of fibroblasts, promoted the migration ability of fibroblasts, and up-regulated the expressions of CICP and TGF-β1 in fibroblasts (Plt;0.05 or Plt;0.01). The expression of β-catenin in fibroblasts treated with 20 and 40 μg/mL of GL-PS was significantly higher than that of the control group (Plt;0.01). Furthermore, after external use of 10, 20, and 40 mg/mL of GL-PS, the rates of wound healing in mice were significantly higher and the wound healing time was significantly less than the control group (Plt;0.05 or Plt;0.01).
CONCLUSION
A certain concentration of GL-PS may promote wound healing via activation of the Wnt/β-catenin signaling pathway and up-regulation of TGF-β1, which might serve as a promising source of skin wound healing.
Animals
;
Cell Movement
;
drug effects
;
Cell Survival
;
drug effects
;
Cells, Cultured
;
Collagen Type I
;
biosynthesis
;
Fibroblasts
;
drug effects
;
Humans
;
Male
;
Mice
;
Polysaccharides
;
pharmacology
;
Reishi
;
chemistry
;
Skin
;
drug effects
;
injuries
;
Transforming Growth Factor beta1
;
physiology
;
Wound Healing
;
drug effects
;
beta Catenin
;
physiology