1.A practical review of watch-and-wait approach in rectal cancer
Hwa Kyung BYUN ; Woong Sub KOOM
Radiation Oncology Journal 2023;41(1):4-11
Rectal resection surgery after neoadjuvant treatment has been the mainstay treatment of locally advanced rectal cancer. However, functional outcomes and quality of life after radical resection of the rectum remain suboptimal. The excellent oncologic outcomes in patients who achieved pathologic complete response after neoadjuvant treatment questioned the need for radical surgery. The watch-and-wait approach is a noninvasive therapeutic alternative for organ preservation and avoiding operative morbidity. In the watch-and-wait approach, patients with locally advanced rectal cancer who achieve excellent clinical response after neoadjuvant treatment undergo active surveillance rather than rectal cancer surgery. In this practical review, we summarized the main results of studies on the watch-and-wait approach and provided a practical method for implementing the watch-and-wait approach.
2.Morphologic change of rectosigmoid colon using belly board and distended bladder protocol.
Yeona CHO ; Jee Suk CHANG ; Mi Sun KIM ; Jaehwan LEE ; Hwakyung BYUN ; Nalee KIM ; Sang Joon PARK ; Ki Chnag KEUM ; Woong Sub KOOM
Radiation Oncology Journal 2015;33(2):134-141
PURPOSE: This study investigates morphologic change of the rectosigmoid colon using a belly board in prone position and distended bladder in patients with rectal cancer. We evaluate the possibility of excluding the proximal margin of anastomosis from the radiation field by straightening the rectosigmoid colon. MATERIALS AND METHODS: Nineteen patients who received preoperative radiotherapy between 2006 and 2009 underwent simulation in a prone position (group A). These patients were compared to 19 patients treated using a belly board in prone position and a distended bladder protocol (group B). Rectosigmoid colon in the pelvic cavity was delineated on planning computed tomography (CT) images. A total dose of 45 Gy was planned for the whole pelvic field with superior margin of the sacral promontory. The volume and redundancy of rectosigmoid colon was assessed. RESULTS: Patients in group B had straighter rectosigmoid colons than those in group A (no redundancy; group A vs. group B, 10% vs. 42%; p = 0.03). The volume of rectosigmoid colon in the radiation field was significantly larger in group A (56.7 vs. 49.1 mL; p = 0.009). In dose volume histogram analysis, the mean irradiated volume was lower in patients in group B (V45 27.2 vs. 18.2 mL; p = 0.004). In Pearson correlation coefficient analysis, the in-field volume of rectosigmoid colon was significantly correlated with the bladder volume (R = 0.86, p = 0.003). CONCLUSION: Use of a belly board and distended bladder protocol could contribute to exclusion of the proximal margin of anastomosis from the radiation field.
Anastomotic Leak
;
Colon*
;
Humans
;
Prone Position
;
Radiotherapy
;
Rectal Neoplasms
;
Urinary Bladder*
3.Morphologic change of rectosigmoid colon using belly board and distended bladder protocol.
Yeona CHO ; Jee Suk CHANG ; Mi Sun KIM ; Jaehwan LEE ; Hwakyung BYUN ; Nalee KIM ; Sang Joon PARK ; Ki Chnag KEUM ; Woong Sub KOOM
Radiation Oncology Journal 2015;33(2):134-141
PURPOSE: This study investigates morphologic change of the rectosigmoid colon using a belly board in prone position and distended bladder in patients with rectal cancer. We evaluate the possibility of excluding the proximal margin of anastomosis from the radiation field by straightening the rectosigmoid colon. MATERIALS AND METHODS: Nineteen patients who received preoperative radiotherapy between 2006 and 2009 underwent simulation in a prone position (group A). These patients were compared to 19 patients treated using a belly board in prone position and a distended bladder protocol (group B). Rectosigmoid colon in the pelvic cavity was delineated on planning computed tomography (CT) images. A total dose of 45 Gy was planned for the whole pelvic field with superior margin of the sacral promontory. The volume and redundancy of rectosigmoid colon was assessed. RESULTS: Patients in group B had straighter rectosigmoid colons than those in group A (no redundancy; group A vs. group B, 10% vs. 42%; p = 0.03). The volume of rectosigmoid colon in the radiation field was significantly larger in group A (56.7 vs. 49.1 mL; p = 0.009). In dose volume histogram analysis, the mean irradiated volume was lower in patients in group B (V45 27.2 vs. 18.2 mL; p = 0.004). In Pearson correlation coefficient analysis, the in-field volume of rectosigmoid colon was significantly correlated with the bladder volume (R = 0.86, p = 0.003). CONCLUSION: Use of a belly board and distended bladder protocol could contribute to exclusion of the proximal margin of anastomosis from the radiation field.
Anastomotic Leak
;
Colon*
;
Humans
;
Prone Position
;
Radiotherapy
;
Rectal Neoplasms
;
Urinary Bladder*
4.Physical and Biological Characteristics of Particle Therapy for Oncologists
Hwa Kyung BYUN ; Min Cheol HAN ; Kyungmi YANG ; Jin Sung KIM ; Gyu Sang YOO ; Woong Sub KOOM ; Yong Bae KIM
Cancer Research and Treatment 2021;53(3):611-620
Particle therapy is a promising and evolving modality of radiotherapy that can be used to treat tumors that are radioresistant to conventional photon beam radiotherapy. It has unique biological and physical advantages compared with conventional radiotherapy. The characteristic feature of particle therapy is the “Bragg peak,” a steep and localized peak of dose, that enables precise delivery of the radiation dose to the tumor while effectively sparing normal organs. Especially, the charged particles (e.g., proton, helium, carbon) cause a high rate of energy loss along the track, thereby leading to high biological effectiveness, which makes particle therapy attractive. Using this property, the particle beam induces more severe DNA double-strand breaks than the photon beam, which is less influenced by the oxygen level. This review describes the general biological and physical aspects of particle therapy for oncologists, including non-radiation oncologists and beginners in the field.
5.Physical and Biological Characteristics of Particle Therapy for Oncologists
Hwa Kyung BYUN ; Min Cheol HAN ; Kyungmi YANG ; Jin Sung KIM ; Gyu Sang YOO ; Woong Sub KOOM ; Yong Bae KIM
Cancer Research and Treatment 2021;53(3):611-620
Particle therapy is a promising and evolving modality of radiotherapy that can be used to treat tumors that are radioresistant to conventional photon beam radiotherapy. It has unique biological and physical advantages compared with conventional radiotherapy. The characteristic feature of particle therapy is the “Bragg peak,” a steep and localized peak of dose, that enables precise delivery of the radiation dose to the tumor while effectively sparing normal organs. Especially, the charged particles (e.g., proton, helium, carbon) cause a high rate of energy loss along the track, thereby leading to high biological effectiveness, which makes particle therapy attractive. Using this property, the particle beam induces more severe DNA double-strand breaks than the photon beam, which is less influenced by the oxygen level. This review describes the general biological and physical aspects of particle therapy for oncologists, including non-radiation oncologists and beginners in the field.
6.Anti-Proliferative Activity of Nodosin, a Diterpenoid from Isodon serra, via Regulation of Wnt/β-Catenin Signaling Pathways in Human Colon Cancer Cells
Eun Seo BAE ; Young-Mi KIM ; Dong-Hwa KIM ; Woong Sub BYUN ; Hyen Joo PARK ; Young-Won CHIN ; Sang Kook LEE
Biomolecules & Therapeutics 2020;28(5):465-472
Colorectal cancer (CRC) is one of the most malignant type of cancers and its incidence is steadily increasing, due to life style factors that include western diet. Abnormal activation of canonical Wnt/β-catenin signaling pathway plays an important role in colorectal carcinogenesis. Therefore, targeting Wnt/β-catenin signaling has been considered a crucial strategy in the discovery of small molecules for CRC. In the present study, we found that Nodosin, an ent-kaurene diterpenoid isolated from Isodon serra, effectively inhibits the proliferation of human colon cancer HCT116 cells. Mechanistically, Nodosin effectively inhibited the overactivated transcriptional activity of β-catenin/T-cell factor (TCF) determined by Wnt/β-catenin reporter gene assay in HEK293 and HCT116 cells. The expression of Wnt/β-catenin target genes such as Axin2, cyclin D1, and survivin were also suppressed by Nodosin in HCT116 cells. Further study revealed that a longer exposure of Nodosin induced the G 2/M phase cell cycle arrest and subsequently apoptosis in HCT116 cells. These findings suggest that the anti-proliferative activity of Nodosin in colorectal cancer cells might in part be associated with the regulation of Wnt/β-catenin signaling pathway.