1.Relating factors to wearing personal radiation protectors among healthcare professionals.
Yunjeong HEO ; Hosun CHUN ; Seonghoon KANG ; Wonjin LEE ; Taewon JANG ; Jongtae PARK
Annals of Occupational and Environmental Medicine 2016;28(1):60-
BACKGROUND: With increasing use of medical radiologic procedures, wearing proper protector should be emphasized to reduce occupational radiation exposures. This research describes the rates of lead apron wearing for radiation protection and assessed occupational factors related to wearing rates for various types of healthcare professionals. METHODS: We conducted a self-administered questionnaire survey through a website, on-site visits, fax, and mail. Of the 13,489 participants, 8858 workers who could not completely separate themselves from radiological procedure areas. Their general characteristics (sex and age), work history (job title, duration of employment, and hospital type), and practices (frequency of radiation procedures, ability to completely separate from radiation, and frequency of wearing protective lead aprons) were examined. RESULTS: The mean rate of lead apron wearing during radiologic procedures was 48.0 %. The rate was different according to sex (male: 52.9 %, female: 39.6 %), hospital type (general hospital: 63.0 %, hospital: 51.3 %, clinic: 35.6 %, dental hospital/clinic: 13.3 %, public health center: 22.8 %), and job title (radiologic technologist: 50.3 %, doctor: 70.3 %, dentist/dental hygienist: 15.0 %, nurse/nursing assistant: 64.5 %) (p < 0.001). By logistic regression analysis stratified by job title, use of lead aprons by radiologic technologists and nurses/nursing assistants was associated with hospital type and exposure frequency score. For doctors, apron wearing was associated with employment duration. For dentists/dental hygienists, apron wearing was associated with the exposure frequency score. CONCLUSIONS: To improve working environments for healthcare professionals exposed to radiation, it is necessary to consider related factors, such as job title, duration of employment, and hospital type, when utilizing a planning and management system to prevent radiation-related health problems.
Delivery of Health Care*
;
Employment
;
Female
;
Humans
;
Logistic Models
;
Postal Service
;
Public Health
;
Radiation Protection
2.Prognostic impact of total body irradiation dose in pediatric acute lymphoblastic leukemia patients treated with allogeneic hematopoietic stem cell transplantation in second complete remission
Wonjin JANG ; Suejung JO ; Jae Won YOO ; Seongkoo KIM ; Jae Wook LEE ; Pil-Sang JANG ; Nack-Gyun CHUNG ; Bin CHO
Blood Research 2022;57(4):256-263
Background:
Allogeneic HSCT may improve survival in pediatric ALL patients who relapse. In this study, we analyzed the outcome and prognostic factors of 62 ALL patients (35 male, 56.5%) who received allogeneic HSCT in second complete remission (CR) at our institution between April 1st 2009 and December 31st 2019.
Methods:
The median time from diagnosis to relapse was 35.1 months (range, 6.0‒113.6 mo).Fifty-three patients (85.5%) experienced bone marrow relapse only. The number of patients who received transplant according to each donor type was as follows: HLA matched family donor 17 (27.4%), matched unrelated donor (UD) 22 (35.5%), mismatched donor 23 (37.1%). All patients received HSCT with a myeloablative conditioning, 58 patients (93.5%) with the incorporation of TBI [31 patients 12 Gray (Gy), 24 patients 13.2 Gy, 3 patients 8 Gy].
Results:
The 5-year event-free survival (EFS), and overall survival of the study group was 41.3±6.3% (26/62), and 42.3±6.6% (27/62), respectively. The cumulative incidence of relapse and transplant-related mortality was 57.1±6.4% and 1.6±1.6%, respectively.Infant ALL, shorter time from diagnosis to relapse, and TBI dose of 12 Gy, rather than 13.2 Gy, resulted in significantly worse EFS. In multivariate analysis, infant ALL and TBI dose of 12 Gy during conditioning predicted significantly lower EFS.
Conclusion
In our study group, treatment with a higher dose of TBI during conditioning resulted in better EFS for ALL patients who underwent HSCT in second CR. Further study is needed to determine potential long-term complications associated with a higher TBI dose.
3.Two cases of extracorporeal membrane oxygenation for ventilator-dependent infants with bronchopulmonary dysplasia and pulmonary hypertension
Yong Hyuk JEON ; Wonjin JANG ; Hye Won KWON ; Sungkyu CHO ; Jae Gun KWAK ; In Kyung LEE ; Kyeong Hun LEE ; June Dong PARK ; Bongjin LEE
Pediatric Emergency Medicine Journal 2024;11(2):91-97
Bronchopulmonary dysplasia (BPD) and pulmonary hypertension (PH) are potentially fatal complications in prematurely born infants. Extracorporeal membrane oxygenation (ECMO) may be a life-saving option for managing infants with BPD and PH. We present 2 patients who were successfully weaned off mechanical ventilators (MVs) through the application of ECMO. The patients were transferred to our institution after receiving MV care for 8 and 10 months, respectively, for BPD and PH. We were able to remove the patients from MVs after a period of ECMO-mediated lung rest. Although more research is required to determine specific criteria for ECMO use in patients with BPD and PH, our clinical experiences may contribute to the early application of ECMO in MV-dependent patients.
4.Development of a model to predict vancomycin serum concentration during continuous infusion of vancomycin in critically ill pediatric patients
Yu Jin HAN ; Wonjin JANG ; Jung Sun KIM ; Hyun Jeong KIM ; Sung Yun SUH ; Yoon Sook CHO ; June Dong PARK ; Bongjin LEE
The Korean Journal of Physiology and Pharmacology 2024;28(2):121-127
Vancomycin is a frequently used antibiotic in intensive care units, and the patient’s renal clearance affects the pharmacokinetic characteristics of vancomycin. Several advantages have been reported for vancomycin continuous intravenous infusion, but studies on continuous dosing regimens based on patients’ renal clearance are insufficient. The aim of this study was to develop a vancomycin serum concentration prediction model by factoring in a patient’s renal clearance. Children admitted to our institution between July 1, 2021, and July 31, 2022 with records of continuous infusion of vancomycin were included in the study. Sex, age, height, weight, vancomycin dose by weight, interval from the start of vancomycin administration to the time of therapeutic drug monitoring sampling, and vancomycin serum concentrations were analyzed with the linear regression analysis of the mixed effect model. Univariable regression analysis was performed using the vancomycin serum concentration as a dependent variable. It showed that vancomycin dose (p < 0.001) and serum creatinine (p = 0.007) were factors that had the most impact on vancomycin serum concentration. Vancomycin serum concentration was affected by vancomycin dose (p < 0.001) and serum creatinine (p = 0.001) with statistical significance, and a multivariable regression model was obtained as follows: Vancomycin serum concentration (mg/l) = –1.296 + 0.281 × vancomycin dose (mg/kg) + 20.458 × serum creatinine (mg/dl) (adjusted coefficient of determination, R2 = 0.66). This prediction model is expected to contribute to establishing an optimal continuous infusion regimen for vancomycin.