1.Exploration of the interaction between remote ischemic preconditioning and anesthetic-induced preconditioning using sevoflurane in isolated perfused rabbit heart
Seung-Hee YOO ; Sooyoung CHO ; Yoonsun WON ; Jong Wha LEE
The Ewha Medical Journal 2024;47(4):e68-
Objectives:
Remote ischemic preconditioning (rIPC) is a novel technique in which brief episodes of ischemia and reperfusion in one organ confer protection against prolonged ischemia in a distant organ.In contrast, anesthetic-induced preconditioning (APC) utilizes volatile anesthetics to protect multiple organs from ischemia-reperfusion injury. Both methods are easily integrated into various clinical scenarios for cardioprotection. However, it remains unclear whether simultaneous application of these techniques could result in complementary, additive, synergistic, or adverse effects.
Methods:
An adult rabbit heart Langendorff model of global ischemia/reperfusion injury was used to compare the cardioprotective effect of rIPC and APC alone and in combination relative to untreated (control) hearts. The rIPC group underwent four cycles of 5-minute ischemia on the hind limb, each followed by 5 minutes of reperfusion. The APC group received 2.5 vol% sevoflurane for 20 minutes via a face mask, followed by a 20-minute washout period.
Results:
Both in vivo rIPC, induced by four 5-minute cycles of ischemia/reperfusion on the hind limb, and APC, administered as 2.5 vol% sevoflurane via a mask, significantly reduced the size of myocardial infarction following 30 minutes of global ischemia by >50% compared to the untreated control group (rIPC, 12.1±1.7%; APC, 13.5±2.1%; P<0.01 compared to control, 31.3±3.0%). However, no additional protective effect was observed when rIPC and APC were combined (rIPC+APC, 14.4±3.3%).
Conclusion
Although combining rIPC and APC did not provide additional protection, there was no inhibitory effect of one intervention on the other.
2.Exploration of the interaction between remote ischemic preconditioning and anesthetic-induced preconditioning using sevoflurane in isolated perfused rabbit heart
Seung-Hee YOO ; Sooyoung CHO ; Yoonsun WON ; Jong Wha LEE
The Ewha Medical Journal 2024;47(4):e68-
Objectives:
Remote ischemic preconditioning (rIPC) is a novel technique in which brief episodes of ischemia and reperfusion in one organ confer protection against prolonged ischemia in a distant organ.In contrast, anesthetic-induced preconditioning (APC) utilizes volatile anesthetics to protect multiple organs from ischemia-reperfusion injury. Both methods are easily integrated into various clinical scenarios for cardioprotection. However, it remains unclear whether simultaneous application of these techniques could result in complementary, additive, synergistic, or adverse effects.
Methods:
An adult rabbit heart Langendorff model of global ischemia/reperfusion injury was used to compare the cardioprotective effect of rIPC and APC alone and in combination relative to untreated (control) hearts. The rIPC group underwent four cycles of 5-minute ischemia on the hind limb, each followed by 5 minutes of reperfusion. The APC group received 2.5 vol% sevoflurane for 20 minutes via a face mask, followed by a 20-minute washout period.
Results:
Both in vivo rIPC, induced by four 5-minute cycles of ischemia/reperfusion on the hind limb, and APC, administered as 2.5 vol% sevoflurane via a mask, significantly reduced the size of myocardial infarction following 30 minutes of global ischemia by >50% compared to the untreated control group (rIPC, 12.1±1.7%; APC, 13.5±2.1%; P<0.01 compared to control, 31.3±3.0%). However, no additional protective effect was observed when rIPC and APC were combined (rIPC+APC, 14.4±3.3%).
Conclusion
Although combining rIPC and APC did not provide additional protection, there was no inhibitory effect of one intervention on the other.
3.Exploration of the interaction between remote ischemic preconditioning and anesthetic-induced preconditioning using sevoflurane in isolated perfused rabbit heart
Seung-Hee YOO ; Sooyoung CHO ; Yoonsun WON ; Jong Wha LEE
The Ewha Medical Journal 2024;47(4):e68-
Objectives:
Remote ischemic preconditioning (rIPC) is a novel technique in which brief episodes of ischemia and reperfusion in one organ confer protection against prolonged ischemia in a distant organ.In contrast, anesthetic-induced preconditioning (APC) utilizes volatile anesthetics to protect multiple organs from ischemia-reperfusion injury. Both methods are easily integrated into various clinical scenarios for cardioprotection. However, it remains unclear whether simultaneous application of these techniques could result in complementary, additive, synergistic, or adverse effects.
Methods:
An adult rabbit heart Langendorff model of global ischemia/reperfusion injury was used to compare the cardioprotective effect of rIPC and APC alone and in combination relative to untreated (control) hearts. The rIPC group underwent four cycles of 5-minute ischemia on the hind limb, each followed by 5 minutes of reperfusion. The APC group received 2.5 vol% sevoflurane for 20 minutes via a face mask, followed by a 20-minute washout period.
Results:
Both in vivo rIPC, induced by four 5-minute cycles of ischemia/reperfusion on the hind limb, and APC, administered as 2.5 vol% sevoflurane via a mask, significantly reduced the size of myocardial infarction following 30 minutes of global ischemia by >50% compared to the untreated control group (rIPC, 12.1±1.7%; APC, 13.5±2.1%; P<0.01 compared to control, 31.3±3.0%). However, no additional protective effect was observed when rIPC and APC were combined (rIPC+APC, 14.4±3.3%).
Conclusion
Although combining rIPC and APC did not provide additional protection, there was no inhibitory effect of one intervention on the other.
4.Exploration of the interaction between remote ischemic preconditioning and anesthetic-induced preconditioning using sevoflurane in isolated perfused rabbit heart
Seung-Hee YOO ; Sooyoung CHO ; Yoonsun WON ; Jong Wha LEE
The Ewha Medical Journal 2024;47(4):e68-
Objectives:
Remote ischemic preconditioning (rIPC) is a novel technique in which brief episodes of ischemia and reperfusion in one organ confer protection against prolonged ischemia in a distant organ.In contrast, anesthetic-induced preconditioning (APC) utilizes volatile anesthetics to protect multiple organs from ischemia-reperfusion injury. Both methods are easily integrated into various clinical scenarios for cardioprotection. However, it remains unclear whether simultaneous application of these techniques could result in complementary, additive, synergistic, or adverse effects.
Methods:
An adult rabbit heart Langendorff model of global ischemia/reperfusion injury was used to compare the cardioprotective effect of rIPC and APC alone and in combination relative to untreated (control) hearts. The rIPC group underwent four cycles of 5-minute ischemia on the hind limb, each followed by 5 minutes of reperfusion. The APC group received 2.5 vol% sevoflurane for 20 minutes via a face mask, followed by a 20-minute washout period.
Results:
Both in vivo rIPC, induced by four 5-minute cycles of ischemia/reperfusion on the hind limb, and APC, administered as 2.5 vol% sevoflurane via a mask, significantly reduced the size of myocardial infarction following 30 minutes of global ischemia by >50% compared to the untreated control group (rIPC, 12.1±1.7%; APC, 13.5±2.1%; P<0.01 compared to control, 31.3±3.0%). However, no additional protective effect was observed when rIPC and APC were combined (rIPC+APC, 14.4±3.3%).
Conclusion
Although combining rIPC and APC did not provide additional protection, there was no inhibitory effect of one intervention on the other.
5.Exploration of the interaction between remote ischemic preconditioning and anesthetic-induced preconditioning using sevoflurane in isolated perfused rabbit heart
Seung-Hee YOO ; Sooyoung CHO ; Yoonsun WON ; Jong Wha LEE
The Ewha Medical Journal 2024;47(4):e68-
Objectives:
Remote ischemic preconditioning (rIPC) is a novel technique in which brief episodes of ischemia and reperfusion in one organ confer protection against prolonged ischemia in a distant organ.In contrast, anesthetic-induced preconditioning (APC) utilizes volatile anesthetics to protect multiple organs from ischemia-reperfusion injury. Both methods are easily integrated into various clinical scenarios for cardioprotection. However, it remains unclear whether simultaneous application of these techniques could result in complementary, additive, synergistic, or adverse effects.
Methods:
An adult rabbit heart Langendorff model of global ischemia/reperfusion injury was used to compare the cardioprotective effect of rIPC and APC alone and in combination relative to untreated (control) hearts. The rIPC group underwent four cycles of 5-minute ischemia on the hind limb, each followed by 5 minutes of reperfusion. The APC group received 2.5 vol% sevoflurane for 20 minutes via a face mask, followed by a 20-minute washout period.
Results:
Both in vivo rIPC, induced by four 5-minute cycles of ischemia/reperfusion on the hind limb, and APC, administered as 2.5 vol% sevoflurane via a mask, significantly reduced the size of myocardial infarction following 30 minutes of global ischemia by >50% compared to the untreated control group (rIPC, 12.1±1.7%; APC, 13.5±2.1%; P<0.01 compared to control, 31.3±3.0%). However, no additional protective effect was observed when rIPC and APC were combined (rIPC+APC, 14.4±3.3%).
Conclusion
Although combining rIPC and APC did not provide additional protection, there was no inhibitory effect of one intervention on the other.
6.Strategies to Improve Smoking Cessation for Participants in Lung Cancer Screening Program: Analysis of Factors Associated with Smoking Cessation in Korean Lung Cancer Screening Project (K-LUCAS)
Yeol KIM ; Jaeho LEE ; Eunju LEE ; Juntae LIM ; Yonghyun KIM ; Choon-Taek LEE ; Seung Hun JANG ; Yu-Jin PAEK ; Won-Chul LEE ; Chan Wha LEE ; Hyae Young KIM ; Jin Mo GOO ; Kui Son CHOI ; Boyoung PARK ; Duk Hyoung LEE ; Hong Gwan SEO
Cancer Research and Treatment 2024;56(1):92-103
Purpose:
Smoking cessation intervention is one of the key components of successful lung cancer screening program. We investigated the effectiveness and related factors of smoking cessation services provided to the participants in a population-based lung cancer screening trial.
Materials and Methods:
The Korean Lung Cancer Screening Project (K-LUCAS) is a nationwide, multi-center lung cancer screening trial that evaluates the feasibility of implementing population-based lung cancer screening. All 5,144 current smokers who participated in the K-LUCAS received a mandatory smoking cessation counseling. Changes in smoking status were followed up using a telephone survey in 6 months after lung cancer screening participation. The lung cancer screening’s impact on smoking cessation is analyzed by variations in the smoking cessation interventions provided in screening units.
Results:
Among 4,136 survey responders, participant’s motivation to quit smoking increased by 9.4% on average after lung cancer screening. After 6 months from the initial screening, 24.3% of participants stopped smoking, and 10.6% of participants had not smoked continuously for at least 6 months after screening. Over 80% of quitters stated that participation in lung cancer screening motivated them to quit smoking. Low-cost public smoking cessation program combined with lung cancer screening increased the abstinence rates. The smokers were three times more likely to quit smoking when the smoking cessation counseling was provided simultaneously with low-dose computed tomography screening results than when provided separately.
Conclusion
A mandatory smoking cessation intervention integrated with screening result counselling by a physician after participation in lung cancer screening could be effective for increasing smoking cessation attempts.
7.High-Volume Hospital Had Lower Mortality of Severe Intracerebral Hemorrhage Patients
Sang-Won PARK ; James Jisu HAN ; Nam Hun HEO ; Eun Chae LEE ; Dong-Hun LEE ; Ji Young LEE ; Boung Chul LEE ; Young Wha LIM ; Gui Ok KIM ; Jae Sang OH
Journal of Korean Neurosurgical Society 2024;67(6):622-636
Objective:
: Intracerebral hemorrhage (ICH) accompanies higher mortality rates than other type of stroke. This study aimed to investigate the association between hospital volume and mortality for cases of ICH.
Methods:
: We used nationwide data from 2013 to 2018 to compare high-volume hospitals (≥32 admissions/year) and low-volume hospitals (<32 admissions/year). We tracked patients’ survival at 3-month, 1-year, 2-year, and 4-year endpoints. The survival of ICH patients was analyzed at 3-month, 1-year, 2-year, and 4-year endpoints using Kaplan-Meier survival analysis. Multivariable logistic regression analysis and Cox regression analysis were performed to determine predictive factors of poor outcomes at discharge and death.
Results:
: Among 9086 ICH patients who admitted to hospital during 18-month period, 6756 (74.4%) and 2330 (25.6%) patients were admitted to high-volume and low-volume hospitals. The mortality of total ICH patients was 18.25%, 23.87%, 27.88%, and 35.74% at the 3-month, 1-year, 2-year, and 4-year, respectively. In multivariate logistic analysis, high-volume hospitals had lower poor functional outcome at discharge than low-volume hospitals (odds ratio, 0.80; 95% confidence interval, 0.72–0.91; p<0.001). In the Cox analysis, high-volume hospitals had significantly lower 3-month, 1-year, 2-year, and 4-year mortality than low-volume hospitals (p<0.05).
Conclusion
: The poor outcome at discharge, short- and long-term mortality in ICH patients differed according to hospital volume. High-volume hospitals showed lower rates of mortality for ICH patients, particularly those with severe clinical status.
8.Human Nasal Inferior Turbinate-Derived Neural Stem Cells Improve the Niche of Substantia Nigra Par Compacta in a Parkinson’s Disease Model by Modulating Hippo Signaling
Junwon CHOI ; Sun Wha PARK ; Hyunji LEE ; Do Hyun KIM ; Sung Won KIM
Tissue Engineering and Regenerative Medicine 2024;21(5):737-748
BACKGROUND:
Parkinson’s disease (PD) is one of the most prevalent neurodegenerative diseases, following Alzheimer’s disease. The onset of PD is characterized by the loss of dopaminergic neurons in the substantia nigra. Stem cell therapy has great potential for the treatment of neurodegenerative diseases, and human nasal turbinate-derived stem cells (hNTSCs) have been found to share some characteristics with mesenchymal stem cells. Although the Hippo signaling pathway was originally thought to regulate cell size in organs, recent studies have shown that it can also control inflammation in neural cells.
METHODS:
Dopaminergic neuron-like cells were differentiated from SH-SY5Y cells (DA-Like cells) and treated with 1-Methyl-4-phenylpyridinium iodide to stimulate Reactive oxidative species (ROS) production. A transwell assay was conducted to validate the effect of hNTSCs on the Hippo pathway. We generated an MPTP-induced PD mouse model and transplanted hNTSCs into the substantia nigra of PD mice via stereotaxic surgery. After five weeks of behavioral testing, the brain samples were validated by immunoblotting and immunostaining to confirm the niche control of hNTSCs.
RESULTS:
In-vitro experiments showed that hNTSCs significantly increased cell survival and exerted anti-inflammatory effects by controlling ROS-mediated ER stress and hippocampal signaling pathway factors. Similarly, the in-vivo experiments demonstrated an increase in anti-inflammatory effects and cell survival rate. After transplantation of hNTSCs, the PD mouse model showed improved mobility and relief from PD symptoms.
CONCLUSION
hNTSCs improved the survival rate of dopaminergic neurons by manipulating the hippocampal pathway through Yes-associated protein (YAP)/transcriptional coactivator with a PDZ-binding motif (TAZ) by reducing inflammatory cytokines. In this study, we found that controlling the niche of hNTSCs had a therapeutic effect on PD lesions.
10.2021 Clinical Practice Guidelines for Diabetes Mellitus in Korea
Kyu Yeon HUR ; Min Kyong MOON ; Jong Suk PARK ; Soo-Kyung KIM ; Seung-Hwan LEE ; Jae-Seung YUN ; Jong Ha BAEK ; Junghyun NOH ; Byung-Wan LEE ; Tae Jung OH ; Suk CHON ; Ye Seul YANG ; Jang Won SON ; Jong Han CHOI ; Kee Ho SONG ; Nam Hoon KIM ; Sang Yong KIM ; Jin Wha KIM ; Sang Youl RHEE ; You-Bin LEE ; Sang-Man JIN ; Jae Hyeon KIM ; Chong Hwa KIM ; Dae Jung KIM ; SungWan CHUN ; Eun-Jung RHEE ; Hyun Min KIM ; Hyun Jung KIM ; Donghyun JEE ; Jae Hyun KIM ; Won Seok CHOI ; Eun-Young LEE ; Kun-Ho YOON ; Seung-Hyun KO ;
Diabetes & Metabolism Journal 2021;45(4):461-481
The Committee of Clinical Practice Guidelines of the Korean Diabetes Association (KDA) updated the previous clinical practice guidelines for Korean adults with diabetes and prediabetes and published the seventh edition in May 2021. We performed a comprehensive systematic review of recent clinical trials and evidence that could be applicable in real-world practice and suitable for the Korean population. The guideline is provided for all healthcare providers including physicians, diabetes experts, and certified diabetes educators across the country who manage patients with diabetes or the individuals at the risk of developing diabetes mellitus. The recommendations for screening diabetes and glucose-lowering agents have been revised and updated. New sections for continuous glucose monitoring, insulin pump use, and non-alcoholic fatty liver disease in patients with diabetes mellitus have been added. The KDA recommends active vaccination for coronavirus disease 2019 in patients with diabetes during the pandemic. An abridgement that contains practical information for patient education and systematic management in the clinic was published separately.

Result Analysis
Print
Save
E-mail