1.Improved graft survival by using three-dimensional printing of intra-abdominal cavity to prevent large-for-size syndrome in liver transplantation
Sunghae PARK ; Gyu-Seong CHOI ; Jong Man KIM ; Sanghoon LEE ; Jae-Won JOH ; Jinsoo RHU
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(1):21-31
Background:
s/Aims: While large-for-size syndrome is uncommon in liver transplantation (LT), it can result in fatal outcome. To prevent such fatality, we manufactured 3D-printed intra-abdominal cavity replicas to provide intuitive understanding of the sizes of the graft and the patient’s abdomen in patients with small body size between July 2020 and February 2022.
Methods:
Clinical outcomes were compared between patients using our 3D model during LT, and patients who underwent LT without 3D model by using 1 : 5 ratio propensity score-matched analysis.
Results:
After matching, a total of 20 patients using 3D-printed abdominal cavity model and 100 patients of the control group were included in this study. There were no significant differences in 30-day postoperative complication (50.0% vs. 64.0%, p = 0.356) and the incidence of large-for-size syndrome (0% vs. 7%, p = 0.599). Overall survival of the 3D-printed group was similar to that of the control group (p = 0.665), but graft survival was significantly superior in the 3D-printed group, compared to the control group (p = 0.034).
Conclusions
Since it showed better graft survival, as well as low cost and short production time, our 3D-printing protocol can be a feasible option for patients with small abdominal cavity to prevent large-for-size syndrome after LT.
2.Improved graft survival by using three-dimensional printing of intra-abdominal cavity to prevent large-for-size syndrome in liver transplantation
Sunghae PARK ; Gyu-Seong CHOI ; Jong Man KIM ; Sanghoon LEE ; Jae-Won JOH ; Jinsoo RHU
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(1):21-31
Background:
s/Aims: While large-for-size syndrome is uncommon in liver transplantation (LT), it can result in fatal outcome. To prevent such fatality, we manufactured 3D-printed intra-abdominal cavity replicas to provide intuitive understanding of the sizes of the graft and the patient’s abdomen in patients with small body size between July 2020 and February 2022.
Methods:
Clinical outcomes were compared between patients using our 3D model during LT, and patients who underwent LT without 3D model by using 1 : 5 ratio propensity score-matched analysis.
Results:
After matching, a total of 20 patients using 3D-printed abdominal cavity model and 100 patients of the control group were included in this study. There were no significant differences in 30-day postoperative complication (50.0% vs. 64.0%, p = 0.356) and the incidence of large-for-size syndrome (0% vs. 7%, p = 0.599). Overall survival of the 3D-printed group was similar to that of the control group (p = 0.665), but graft survival was significantly superior in the 3D-printed group, compared to the control group (p = 0.034).
Conclusions
Since it showed better graft survival, as well as low cost and short production time, our 3D-printing protocol can be a feasible option for patients with small abdominal cavity to prevent large-for-size syndrome after LT.
3.Improved graft survival by using three-dimensional printing of intra-abdominal cavity to prevent large-for-size syndrome in liver transplantation
Sunghae PARK ; Gyu-Seong CHOI ; Jong Man KIM ; Sanghoon LEE ; Jae-Won JOH ; Jinsoo RHU
Annals of Hepato-Biliary-Pancreatic Surgery 2025;29(1):21-31
Background:
s/Aims: While large-for-size syndrome is uncommon in liver transplantation (LT), it can result in fatal outcome. To prevent such fatality, we manufactured 3D-printed intra-abdominal cavity replicas to provide intuitive understanding of the sizes of the graft and the patient’s abdomen in patients with small body size between July 2020 and February 2022.
Methods:
Clinical outcomes were compared between patients using our 3D model during LT, and patients who underwent LT without 3D model by using 1 : 5 ratio propensity score-matched analysis.
Results:
After matching, a total of 20 patients using 3D-printed abdominal cavity model and 100 patients of the control group were included in this study. There were no significant differences in 30-day postoperative complication (50.0% vs. 64.0%, p = 0.356) and the incidence of large-for-size syndrome (0% vs. 7%, p = 0.599). Overall survival of the 3D-printed group was similar to that of the control group (p = 0.665), but graft survival was significantly superior in the 3D-printed group, compared to the control group (p = 0.034).
Conclusions
Since it showed better graft survival, as well as low cost and short production time, our 3D-printing protocol can be a feasible option for patients with small abdominal cavity to prevent large-for-size syndrome after LT.
4.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
5.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
6.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
7.Association between mechanical power and intensive care unit mortality in Korean patients under pressure-controlled ventilation
Jae Kyeom SIM ; Sang-Min LEE ; Hyung Koo KANG ; Kyung Chan KIM ; Young Sam KIM ; Yun Seong KIM ; Won-Yeon LEE ; Sunghoon PARK ; So Young PARK ; Ju-Hee PARK ; Yun Su SIM ; Kwangha LEE ; Yeon Joo LEE ; Jin Hwa LEE ; Heung Bum LEE ; Chae-Man LIM ; Won-Il CHOI ; Ji Young HONG ; Won Jun SONG ; Gee Young SUH
Acute and Critical Care 2024;39(1):91-99
Mechanical power (MP) has been reported to be associated with clinical outcomes. Because the original MP equation is derived from paralyzed patients under volume-controlled ventilation, its application in practice could be limited in patients receiving pressure-controlled ventilation (PCV). Recently, a simplified equation for patients under PCV was developed. We investigated the association between MP and intensive care unit (ICU) mortality. Methods: We conducted a retrospective analysis of Korean data from the Fourth International Study of Mechanical Ventilation. We extracted data of patients under PCV on day 1 and calculated MP using the following simplified equation: MPPCV = 0.098 ∙ respiratory rate ∙ tidal volume ∙ (ΔPinsp + positive end-expiratory pressure), where ΔPinsp is the change in airway pressure during inspiration. Patients were divided into survivors and non-survivors and then compared. Multivariable logistic regression was performed to determine association between MPPCV and ICU mortality. The interaction of MPPCV and use of neuromuscular blocking agent (NMBA) was also analyzed. Results: A total of 125 patients was eligible for final analysis, of whom 38 died in the ICU. MPPCV was higher in non-survivors (17.6 vs. 26.3 J/min, P<0.001). In logistic regression analysis, only MPPCV was significantly associated with ICU mortality (odds ratio, 1.090; 95% confidence interval, 1.029–1.155; P=0.003). There was no significant effect of the interaction between MPPCV and use of NMBA on ICU mortality (P=0.579). Conclusions: MPPCV is associated with ICU mortality in patients mechanically ventilated with PCV mode, regardless of NMBA use.
8.The Korean Academy of Asthma Allergy and Clinical Immunology guidelines for sublingual immunotherapy
Gwanghui RYU ; Hye Mi JEE ; Hwa Young LEE ; Sung-Yoon KANG ; Kyunghoon KIM ; Ju Hee KIM ; Kyung Hee PARK ; So-Young PARK ; Myong Soon SUNG ; Youngsoo LEE ; Eun-Ae YANG ; Jin-Young MIN ; Eun Kyo HA ; Sang Min LEE ; Yong Won LEE ; Eun Hee CHUNG ; Sun Hee CHOI ; Young-Il KOH ; Seon Tae KIM ; Dong-Ho NAHM ; Jung Won PARK ; Jung Yeon SHIM ; Young Min AN ; Man Yong HAN ; Jeong-Hee CHOI ; Yoo Seob SHIN ; Doo Hee HAN ;
Allergy, Asthma & Respiratory Disease 2024;12(3):125-133
Allergen immunotherapy (AIT) has been used for over a century and has been demonstrated to be effective in treating patients with various allergic diseases. AIT allergens can be administered through various routes, including subcutaneous, sublingual, intralymphatic, oral, or epicutaneous routes. Sublingual immunotherapy (SLIT) has recently gained clinical interest, and it is considered an alternative treatment for allergic rhinitis (AR) and asthma. This review provides an overview of the current evidence-based studies that address the use of SLIT for treating AR, including (1) mechanisms of action, (2) appropriate patient selection for SLIT, (3) the current available SLIT products in Korea, and (4) updated information on its efficacy and safety. Finally, this guideline aims to provide the clinician with practical considerations for SLIT.
9.The Korean Academy of Asthma Allergy and Clinical Immunology guidelines for allergen immunotherapy
Hwa Young LEE ; Sung-Yoon KANG ; Kyunghoon KIM ; Ju Hee KIM ; Gwanghui RYU ; Jin-Young MIN ; Kyung Hee PARK ; So-Young PARK ; Myongsoon SUNG ; Youngsoo LEE ; Eun-Ae YANG ; Hye Mi JEE ; Eun Kyo HA ; Yoo Seob SHIN ; Sang Min LEE ; Eun Hee CHUNG ; Sun Hee CHOI ; Young-Il KOH ; Seon Tae KIM ; Dong-Ho NAHM ; Jung Won PARK ; Jung Yeon SHIM ; Young Min AN ; Doo Hee HAN ; Man Yong HAN ; Yong Won LEE ; Jeong-Hee CHOI ;
Allergy, Asthma & Respiratory Disease 2024;12(3):102-124
Allergen immunotherapy (AIT) is a causative treatment of allergic diseases in which allergen extracts are regularly administered in a gradually escalated doses, leading to immune tolerance and consequent alleviation of allergic diseases. The need for uniform practice guidelines in AIT is continuously growing as the number of potential candidates for AIT increases and new therapeutic approaches are tried. This updated version of the Korean Academy of Asthma Allergy and Clinical Immunology recommendations for AIT, published in 2010, proposes an expert opinion by specialists in allergy, pediatrics, and otorhinolaryngology. This guideline deals with the basic knowledge of AIT, including mechanisms, clinical efficacy, allergen standardization, important allergens in Korea, and special consideration in pediatrics. The article also covers the methodological aspects of AIT, including patient selection, allergen selection, schedule and doses, follow-up care, efficacy measurements, and management of adverse reactions. Although this guideline suggests the optimal dosing schedule, an individualized approach and modifications are recommended considering the situation for each patient and clinic.
10.Multivariable linear model for predicting graft weight based on 3-dimensional volumetry in regards to body weight change of living liver donor: an observational cohort study
Seungwook HAN ; Jinsoo RHU ; Soyoung LIM ; Gyu-seong CHOI ; Jong Man KIM ; Jae-Won JOH
Annals of Surgical Treatment and Research 2024;107(2):91-99
Purpose:
The purpose of this study is to build a prediction model for estimating graft weight about different graft volumetry methods combined with other variables.
Methods:
Donors who underwent living-donor right hepatectomy from March 2021 to March 2023 were included. Estimated graft volume measured by conventional method and 3-dimensional (3D) software were collected as well as the actual graft weight. Linear regression was used to build a prediction model. Donor groups were divided according to the 3D volumetry of <700 cm3 , 700–899 cm3 , and ≥900 cm3 to compare the performance of different models.
Results:
A total of 119 donors were included. Conventional volumetry showed R2 of 0.656 (P < 0.001) while 3D software showed R2 of 0.776 (P < 0.001). The R2 of the multivariable model was 0.842 (P < 0.001) including for 3D volume (β = 0.623, P < 0.001), body mass index (β = 7.648, P < 0.001), and amount of weight loss (β = –7.252, P < 0.001). The median errors between different models and actual graft weight did not differ in donor groups (<700 and 700–899 cm3 ), while the median error of univariable linear model using 3D software (122.5; interquartile range [IQR], 61.5–179.8) was significantly higher than multivariable-adjusted linear model (41.5; IQR, 24.8–69.8; P = 0.003) in donors with estimated graft weight ≥900 cm3 .
Conclusion
The univariable 3D volumetry model showed an acceptable outcome for donors with an estimated graft volume <900 cm3 . For donors with an estimated graft volume ≥900 cm3 , the multivariable-adjusted linear model showed higher accuracy.

Result Analysis
Print
Save
E-mail