1.Application of Chinese herbal medicines to revitalize adult stem cells for tissue regeneration.
Hing-Lok WONG ; Wing-sum SIU ; Wai-ting SHUM ; Si GAO ; Ping-Chung LEUNG ; Chun-Hay KO
Chinese journal of integrative medicine 2012;18(12):903-908
It has been established in the recent several decades that adult stem cells play a crucial role in tissue renewal and regeneration. Adult stem cells locate in certain organs can differentiate into functional entities such as macrophages and bone cells. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are two of the most important populations of adult stem cells. The application of these stem cells offers a new insight in treating various pathological conditions, through replenishing cells of specific functions by turning on or off the differentiating program within quiescent stem cell niches. Apart from that, they are also capable to travel through the circulation, migrate to injury sites and differentiate to enhance regeneration process. Recently, Chinese medicine (CM) has shown to be potential candidates to activate adult stem cells for tissue regeneration. This review summarizes our own, as well as others' findings concerning the use of Chinese herbal medicine in the regulation processes of adult stem cells differentiation and their movement in tissue repair and rejuvenation. A number of Chinese herbs are used as therapeutic agents and presumably preventive agents on metabolic disorders. In our opinion, the activation of adult stem cells self-regeneration not only provides a novel way to repair tissue damage, but also reduces the use of targeted drug that adversely altering the normal metabolism of human subjects.
Cell Differentiation
;
Herbal Medicine
;
Humans
;
Medicine, Chinese Traditional
;
Regeneration
;
Stem Cells
;
cytology
;
drug effects
;
Tissue Engineering
2.Seropharmacological study on osteogenic effects of post-absorption ingredients of an osteoprotective herbal formula.
Wing-Sum SIU ; Chun-Hay KO ; Hing-Lok WONG ; Si GAO ; Wai-Ting SHUM ; Clara Bik-San LAU ; Lung-Kim HUNG ; Ping-Chung LEUNG
Chinese journal of integrative medicine 2017;23(1):25-32
OBJECTIVETo further investigate the {ptin vitro} effects of an osteoprotective herbal formula "ELP" (Herba Epimedii, Fructus Ligustri Lucidi and Fructus Psoraleae) using seropharmacological approach.
METHODSRats were fed with ELP or its individual component herbs for 2 days. The serum containing the postabsorbed ingredients of the herbal items were collected for cell culture using UMR106 cell, RAW264.7 cell and mesenchymal stem cell (MSC) isolated from the bone marrow of the rats. The effects of the herbal-containing serum on cell toxicity were detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay; bromodeoxyuridine assay was conducted to measure the cell proliferation of UMR106 cell and MSC; cell activity was measured using colorimetric method, and mRNA expression of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteopontin (OPN) of UMR106 and MSC as well as matrix metalloproteinase 9 (MMP-9), tartrate-resistant acid phosphatase (TRAP) and cathepsin K of RAW264.7 were analyzed using real-time reverse-transcription polymerase chain reaction.
RESULTSELP and its component serum exhibited no cytotoxic effects on the cells. The ELP-containing serum increased the proliferation of UMR106 cell and MSC by 25.7% and 14.4 %, respectively and the alkaline phosphatase activity of MSC was increased by 42.6%. On the contrary, it inhibited the RAW264.7 cell differentiation by 29.2 %. ELP serum upregulated the Runx2 expression of UMR and MSC by 1.18 fold and 1.27 fold, respectively. It also upregulated ALP and OPN expression in MSC by 1.69- and 2.12-fold, respectively. On the other hand, ELP serum down-regulated MMP-9 and cathepsin K expression of RAW264.7 cell by 0.46- and 0.36-fold, respectively.
CONCLUSIONSThe serum of the animals fed with ELP contains active ingredients which are effective in promoting osteogenesis and inhibiting osteoclastogenesis.
Absorption, Physiological ; drug effects ; Animals ; Bone and Bones ; drug effects ; pathology ; Cell Differentiation ; drug effects ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Male ; Mice ; Osteoclasts ; drug effects ; metabolism ; pathology ; Osteogenesis ; drug effects ; Protective Agents ; pharmacology ; RAW 264.7 Cells ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Serum ; metabolism
3.Bone protection effects of a novel Chinese herbal formula, taikong yangxin prescription, in hindlimb unloaded rats against bone deterioration.
Chun-hay KO ; Wing-sum SIU ; Chung-lap CHAN ; Chi-man KOON ; Kwok-pui FUNG ; Yong-zhi LI ; Ying-hui LI ; Ping-chung LEUNG
Chinese journal of integrative medicine 2015;21(10):759-764
OBJECTIVETo investigate the protective effects of a Chinese herbal formula, taikong yangxin prescription (TKYXP) against bone deterioration in a hindlimb unloaded (tail-suspension) rat model.
METHODSThirty-two male Sprague-Dawley rats were divided into 4 groups: tail-suspension group fed with 2.5 g•kg(-1)•day(-1) of TKYXP extract (high dose), tail-suspension group fed with 1.25 g•kg(-1)•day(-1) (low dose), tail-suspended group treated with water placebo (placebo control group) and non tail-suspended group. The effects of TKYXP on bone were assessed using peripheral quantitative computed tomography (pQCT), microcomputerized tomography (micro-CT) and three-point bending biomechanical test on the femur in vivo.
RESULTSTKYXP had a significant protective effect against bone loss induced by tail-suspension on day 28, as shown in the reduction in bone mineral density (BMD) loss, preservation of bone micro-architecture and biomechanical strength. The administration ofhigh dose TKYXP could significantly reduce the total BMD loss by 4.8% and 8.0% at the femur and tibia regions, respectively, compared with the placebo control group (P<0.01) on day 28. Its bone protective effect on the femur was further substantiated by the increases of the trabecular BMD (by 6.6%), bone volume fraction (by 20.9%), trabecular number (by 9.5%) and thickness (by 11.9%) as compared with the placebo control group.
CONCLUSIONTKYXP may protect the bone under weightless influence from gradual structural deterioration in the tail-suspension model.
Animals ; Biomechanical Phenomena ; drug effects ; Bone Density ; drug effects ; Bone and Bones ; diagnostic imaging ; drug effects ; Drugs, Chinese Herbal ; administration & dosage ; pharmacology ; Femur ; Male ; Rats ; Rats, Sprague-Dawley ; Tibia ; Tomography Scanners, X-Ray Computed ; Weightlessness ; X-Ray Microtomography
4.Inhibitory effect of different Dendrobium species on LPS-induced inflammation in macrophages via suppression of MAPK pathways.
Qiang ZENG ; Chun-Hay KO ; Wing-Sum SIU ; Kai-Kai LI ; Chun-Wai WONG ; Xiao-Qiang HAN ; Liu YANG ; Clara Bik-San LAU ; Jiang-Miao HU ; Ping-Chung LEUNG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):481-489
Dendrobii Caulis (DC), named 'Shihu' in Chinese, is a precious herb in traditional Chinese medicine. It is widely used to nourish stomach, enhance body fluid production, tonify "Yin" and reduce heat. More than thirty Dendrobium species are used as folk medicine. Some compounds from DC exhibit inhibitory effects on macrophage inflammation. In the present study, we compared the anti-inflammatory effects among eight Dendrobium species. The results provided evidences to support Dendrobium as folk medicine, which exerted its medicinal function partially by its inhibitory effects on inflammation. To investigate the anti-inflammatory effect of Dendrobium species, mouse macrophage cell line RAW264.7 was activated by lipopolysaccharide. The nitric oxide (NO) level was measured using Griess reagent while the pro-inflammatory cytokines were tested by ELISA. The protein expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and mitogen-activated protein kinases (MAPKs) phosphorylation were evaluated by Western blotting analysis. Among the eight Dendrobium species, both water extracts of D. thyrsiflorum B.S.Williams (DTW) and D. chrysotoxum Lindl (DCHW) showed most significant inhibitory effects on NO production in a concentration-dependent manner. DTW also significantly reduced TNF-α, MCP-1, and IL-6 production. Further investigations showed that DTW suppressed iNOS and COX-2 expression as well as ERK and JNK phosphorylation, suggesting that the inhibitory effects of DTW on LPS-induced macrophage inflammation was through the suppression of MAPK pathways. In conclusion, D. thyrsiflorum B.S.Williams was demonstrated to have potential to be used as alternative or adjuvant therapy for inflammation.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Cyclooxygenase 2
;
genetics
;
Cytokines
;
metabolism
;
Dendrobium
;
chemistry
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Inflammation
;
chemically induced
;
drug therapy
;
Lipopolysaccharides
;
Macrophages
;
drug effects
;
enzymology
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Nitric Oxide
;
analysis
;
Nitric Oxide Synthase Type II
;
genetics
;
Phosphorylation
;
drug effects
;
Plant Extracts
;
pharmacology
;
RAW 264.7 Cells
;
Signal Transduction
;
drug effects