1.The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats
Yoon-Jo LEE ; Ji-Hyeon OH ; Suyeon PARK ; Jongho CHOI ; Min-Ho HONG ; HaeYong KWEON ; Weon-Sik CHAE ; Xiangguo CHE ; Je-Yong CHOI ; Seong-Gon KIM
Tissue Engineering and Regenerative Medicine 2025;22(1):91-104
BACKGROUND:
Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives.
METHODS:
This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses.
RESULTS:
The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group.Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity.
CONCLUSION
These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients.
2.The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats
Yoon-Jo LEE ; Ji-Hyeon OH ; Suyeon PARK ; Jongho CHOI ; Min-Ho HONG ; HaeYong KWEON ; Weon-Sik CHAE ; Xiangguo CHE ; Je-Yong CHOI ; Seong-Gon KIM
Tissue Engineering and Regenerative Medicine 2025;22(1):91-104
BACKGROUND:
Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives.
METHODS:
This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses.
RESULTS:
The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group.Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity.
CONCLUSION
These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients.
3.The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats
Yoon-Jo LEE ; Ji-Hyeon OH ; Suyeon PARK ; Jongho CHOI ; Min-Ho HONG ; HaeYong KWEON ; Weon-Sik CHAE ; Xiangguo CHE ; Je-Yong CHOI ; Seong-Gon KIM
Tissue Engineering and Regenerative Medicine 2025;22(1):91-104
BACKGROUND:
Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives.
METHODS:
This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses.
RESULTS:
The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group.Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity.
CONCLUSION
These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients.
4.The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats
Yoon-Jo LEE ; Ji-Hyeon OH ; Suyeon PARK ; Jongho CHOI ; Min-Ho HONG ; HaeYong KWEON ; Weon-Sik CHAE ; Xiangguo CHE ; Je-Yong CHOI ; Seong-Gon KIM
Tissue Engineering and Regenerative Medicine 2025;22(1):91-104
BACKGROUND:
Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives.
METHODS:
This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses.
RESULTS:
The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group.Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity.
CONCLUSION
These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients.
5.The Application of L-Serine-Incorporated Gelatin Sponge into the Calvarial Defect of the Ovariectomized Rats
Yoon-Jo LEE ; Ji-Hyeon OH ; Suyeon PARK ; Jongho CHOI ; Min-Ho HONG ; HaeYong KWEON ; Weon-Sik CHAE ; Xiangguo CHE ; Je-Yong CHOI ; Seong-Gon KIM
Tissue Engineering and Regenerative Medicine 2025;22(1):91-104
BACKGROUND:
Osteoporosis, characterized by decreased bone mineral density due to an imbalance between osteoblast and osteoclast activity, poses significant challenges in bone healing, particularly in postmenopausal women. Current treatments, such as bisphosphonates, are effective but associated with adverse effects like medication-related osteonecrosis of the jaw, necessitating safer alternatives.
METHODS:
This study investigated the use of L-serine-incorporated gelatin sponges for bone regeneration in calvarial defects in an ovariectomized rat model of osteoporosis. Thirty rats were divided into three groups: a control group, a group treated with a gelatin sponge containing an amino acid mixture, and a group treated with a gelatin sponge containing L-serine. Bone regeneration was assessed using micro-computed tomography (micro-CT) and histological analyses.
RESULTS:
The L-serine group showed a significant increase in bone volume (BV) and bone area compared to the control and amino acid groups. The bone volume to total volume (BV/TV) ratio was also significantly higher in the L-serine group.Immunohistochemical analysis demonstrated that L-serine treatment suppressed the expression of cathepsin K, a marker of osteoclast activity, while increasing serine racemase activity.
CONCLUSION
These findings suggest that L-serine-incorporated gelatin sponges not only enhance bone formation but also inhibit osteoclast-mediated bone resorption, providing a promising and safer alternative to current therapies for osteoporosis-related bone defects. Further research is needed to explore its clinical applications in human patients.
6.The TNF-NF-κB-DKK1 Axis Promoted Bone Formation in the Enthesis of Ankylosing Spondylitis
Sungsin JO ; Bora NAM ; Young Lim LEE ; Hyosun PARK ; Subin WEON ; Sung-Hoon CHOI ; Ye-Soo PARK ; Tae-Hwan KIM
Journal of Rheumatic Diseases 2021;28(4):216-224
Objective:
This study aimed to determine the serum Dickkopf 1 (DKK1) levels in ankylosing spondylitis (AS) patients and decipher the mechanism of tumor necrosis factor (TNF)-mediated DKK1 regulation in human AS enthesis cells.
Methods:
The sera were obtained from 103 patients with AS and 30 healthy controls (HCs). The enthesis of facet joints were obtained from 4 AS patients and 5 controls. The serum levels of DKK1 were measured using ELISA and compared between AS and HCs. The impact of TNF on DKK1 expression in human primary spinal enthesis cells was evaluated using various molecular biology techniques and bone formation indicators.
Results:
AS patients showed higher serum DKK1 levels than HCs after adjusting for age (917.4 [615.3∼1,310.0] pg/mL vs. 826.2 [670.3∼927.8] pg/mL, p=0.043). TNF treatment promoted bone formation and DKK1 expression in both control enthesis cells and those of AS. This enhanced bone formation by TNF was pronounced in AS-enthesis than those of controls. Mechanically, TNF induced NF-κB activation upregulates the DKK1 transcript level. While, NF-κB inhibitor led to downregulate DKK1 expression in the enthesis. Besides, DKK1 overexpression promoted bone formation in enthesis.
Conclusion
TNF induced DKK1 expression in the enthesis through NF-κB activation. TNF-induced DKK1 expression may play a bone formation in the radiologic progression of ankylosing spondylitis.
7.The TNF-NF-κB-DKK1 Axis Promoted Bone Formation in the Enthesis of Ankylosing Spondylitis
Sungsin JO ; Bora NAM ; Young Lim LEE ; Hyosun PARK ; Subin WEON ; Sung-Hoon CHOI ; Ye-Soo PARK ; Tae-Hwan KIM
Journal of Rheumatic Diseases 2021;28(4):216-224
Objective:
This study aimed to determine the serum Dickkopf 1 (DKK1) levels in ankylosing spondylitis (AS) patients and decipher the mechanism of tumor necrosis factor (TNF)-mediated DKK1 regulation in human AS enthesis cells.
Methods:
The sera were obtained from 103 patients with AS and 30 healthy controls (HCs). The enthesis of facet joints were obtained from 4 AS patients and 5 controls. The serum levels of DKK1 were measured using ELISA and compared between AS and HCs. The impact of TNF on DKK1 expression in human primary spinal enthesis cells was evaluated using various molecular biology techniques and bone formation indicators.
Results:
AS patients showed higher serum DKK1 levels than HCs after adjusting for age (917.4 [615.3∼1,310.0] pg/mL vs. 826.2 [670.3∼927.8] pg/mL, p=0.043). TNF treatment promoted bone formation and DKK1 expression in both control enthesis cells and those of AS. This enhanced bone formation by TNF was pronounced in AS-enthesis than those of controls. Mechanically, TNF induced NF-κB activation upregulates the DKK1 transcript level. While, NF-κB inhibitor led to downregulate DKK1 expression in the enthesis. Besides, DKK1 overexpression promoted bone formation in enthesis.
Conclusion
TNF induced DKK1 expression in the enthesis through NF-κB activation. TNF-induced DKK1 expression may play a bone formation in the radiologic progression of ankylosing spondylitis.
8.Percutaneous Coronary Intervention for Acute Myocardial Infarction in Elderly Patients with Renal Dysfunction: Results from the Korea Acute Myocardial Infarction Registry.
Sang Yup LIM ; Eun Hui BAE ; Joon Seok CHOI ; Chang Seong KIM ; Seong Kwon MA ; Youngkeun AHN ; Myung Ho JEONG ; Weon KIM ; Jong Shin WOO ; Young Jo KIM ; Myeong Chan CHO ; Chong Jin KIM ; Soo Wan KIM
Journal of Korean Medical Science 2013;28(7):1027-1033
This study aimed to evaluate the effects of percutaneous coronary intervention (PCI) on short- and long-term major adverse cardiac events (MACE) in elderly (>75 yr old) acute myocardial infarction (AMI) patients with renal dysfunction. As part of Korea AMI Registry (KAMIR), elderly patients with AMI and renal dysfunction (GFR<60 mL/min) received either medical (n=439) or PCI (n=1,019) therapy. Primary end point was in-hospital death. Secondary end point was MACE during a 1 month and 1 yr follow-up. PCI group showed a significantly lower incidence of in-hospital death (20.0% vs 14.3%, P=0.006). Short-term and long-term MACE rates were higher in medical therapy group (31.9% vs 19.0%; 57.7% vs 31.3%, P<0.001), and this difference was mainly attributed to cardiac death (29.3% vs 17.6%; 51.9% vs 25.0%, P<0.001). MACE-free survival time after adjustment was also higher in PCI group on short-term (hazard ratio, 0.67; confidence interval, 0.45-0.98; P=0.037) and long-term follow-up (hazard ratio, 0.61, confidence interval, 0.45-0.83; P=0.002). In elderly AMI patients with renal dysfunction, PCI therapy yields favorable in-hospital and short-term and long-term MACE-free survival.
Aged
;
Aged, 80 and over
;
Aging
;
Creatinine/blood
;
Female
;
Humans
;
Male
;
Myocardial Infarction/*mortality/*therapy
;
Percutaneous Coronary Intervention/*methods
;
Registries
;
Renal Insufficiency/*complications
;
Republic of Korea
;
Survival Rate
;
Treatment Outcome
9.Analysis of Outcome and Complications in 164 Cases of Free Flap Reconstructions: Experience of a National Cancer Center
Jae Ho JEON ; Sung Won PARK ; Sae Hyung JO ; Joo Yong PARK ; Jong Ho LEE ; Sung Weon CHOI
Journal of the Korean Association of Maxillofacial Plastic and Reconstructive Surgeons 2011;33(6):478-482
Delirium
;
Diabetes Mellitus
;
Fibula
;
Fistula
;
Forearm
;
Free Tissue Flaps
;
Humans
;
Hypertension
;
Incidence
;
Mouth Neoplasms
;
Necrosis
;
Osteoradionecrosis
;
Pneumonia
;
Postoperative Complications
;
Retrospective Studies
;
Risk Factors
;
Smoke
;
Smoking
;
Surgery, Oral
;
Thigh
;
Tissue Donors
;
Wound Healing
10.CLINICAL CHARACTERISTICS OF SECOND PRIMARY CANCER IN ORAL CANCER PATIENTS
Sae Hyung JO ; Jung Hyun SHIN ; Ui Ryoung LEE ; Joo Yong PARK ; Sung Weon CHOI
Journal of the Korean Association of Maxillofacial Plastic and Reconstructive Surgeons 2010;32(1):57-61
Body Mass Index
;
Breast
;
Cervix Uteri
;
Chemoprevention
;
Early Diagnosis
;
Esophagus
;
Female
;
Follow-Up Studies
;
Humans
;
Larynx
;
Liver
;
Lung
;
Male
;
Medical Records
;
Mouth
;
Mouth Neoplasms
;
Neoplasms, Second Primary
;
Polymethacrylic Acids
;
Prognosis
;
Risk Factors
;
Smoke
;
Smoking
;
Stomach
;
Survival Rate

Result Analysis
Print
Save
E-mail