1.Antitumor effect of malaria genetically attenuated sporozoites infection in a murine lewis lung cancer model
Xufeng DENG ; Hong ZHENG ; Dong ZHOU ; Quanxing LIU ; Yan DING ; Wenyue XU ; Jigang DAI
Chongqing Medicine 2016;45(11):1441-1443,1447
Objective To learn whether plasmodium genetic attenuated sporozoites (GAS) can induce immunity against lung cancer ,in order to provide new ideas for the study of lung cancer vaccine .Methods Ther study was divided into two groups respec‐tively ,experimental group received intravenous injection of genetically attenuated sporozoites to immunize C57BL/6J mice and con‐trol group injection of phosphate buffer solution (PBS);after 14 days ,we subcutaneously inoculated lewis lung cancer (LLC) cells , calipers was used to measure tumor size .Immunohistochemical staining was detected tumor proliferation ,apoptosis ,and angiogene‐sis .Results There was statistically significant in tumor size .Immunohistochemical staining revealed that attenuated sporozoites in‐fection inhibited LLC eslls proliferation ,angiogenesis ,apoptosis .Conclusion The malaria attenuated sporozoites may provide a no‐vel strategy or therapeutic vaccine vector for anti‐lung cancer immune‐based therapy .
2.Biocatalytic desymmetric hydrolysis of 3-(4-chlorophenyl)-glutaronitrile to the key precursor of optically pure baclofen.
Meizhen XU ; Jie REN ; Jingsong GONG ; Wenyue DONG ; Qiaqing WU ; Zhenghong XU ; Dunming ZHU
Chinese Journal of Biotechnology 2013;29(1):31-40
We produced (S)-4-cyano-3-(4-chlorophenyl)-butyrate by highly stereoselective biocatalyst in this study. A nitrilase-producing strain, named Gibberella intermedia WX12, was isolated by 3-(4-chlorophenyl)-glutaronitrile as substrate in the screening with phenol-sodium hypochlorite method. The fermentation conditions and catalytic properties of this strain were investigated. The preferred carbon and nitrogen sources for nitrilase production were lactose (30 g/L) and peptone (20 g/L). After being cultivated for 96 h, the cells were collected for use in biotransformation. The hydrolysis of 3-(4-chlorophenyl)-glutaronitrile was performed at 30 degrees C in phosphate buffer (pH 8.0, 50 mmol/L) for 24 h to give (S)-4-cyano-3-(4-chlorophenyl)-butyric acid with 90% yield and > 99% of ee, which can be used for the synthesis of (R)- and (S)-baclofen. The configuration of product was determined by chemically converting it to baclofen and comparison with the authentic sample by chiral HPLC analysis.
Aminohydrolases
;
metabolism
;
Baclofen
;
chemical synthesis
;
chemistry
;
Biocatalysis
;
Chlorophenols
;
chemistry
;
Gibberella
;
enzymology
;
Hydrolysis
;
Nitriles
;
chemistry
;
Prodrugs
;
chemical synthesis
;
chemistry
3.Expression and characterization of a novel ω-transaminase from Burkholderia phytofirmans PsJN.
Yuncheng DU ; Wenyue DONG ; Jinju JIANG ; Qijia CHEN ; Jinhui FENG ; Qiaqing WU ; Dunming ZHU
Chinese Journal of Biotechnology 2016;32(7):912-926
Production of chiral amines and unnatural amino-acid using ω-transaminase can be achieved by kinetic resolution and asymmetric synthesis, thus ω-transaminase is of great importance in the synthesis of pharmaceutical intermediates. By genomic data mining, a putative ω-transaminase gene hbp was found in Burkholderia phytofirmans PsJN. The gene was cloned and over-expressed in Escherichia coli BL21 (DE3). The recombinant enzyme (HBP) was purified by Ni-NTA column and its catalytic properties and substrate profile were studied. HBP showed high relative activity (33.80 U/mg) and enantioselectivity toward β-phenylalanine (β-Phe). The optimal reaction temperature and pH were 40 ℃ and 8.0-8.5, respectively. We also established a simpler and more effective method to detect the deamination reaction of β-Phe by UV absorption method using microplate reader, and demonstrated the thermodynamic property of this reaction. The substrate profiling showed that HBP was specific to β-Phe and its derivatives as the amino donor. HBP catalyzed the resolution of rac-β-Phe and its derivatives, the products (R)-amino acids were obtained with about 50% conversions and 99% ee.
Bacterial Proteins
;
biosynthesis
;
genetics
;
Burkholderia
;
enzymology
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Transaminases
;
biosynthesis
;
genetics